The 0.4 < z < 1.3 star formation history of the Universe as viewed in the far-infrared

Aims. We use the deepest existing mid- and far-infrared observations (reaching ∼3 mJy at 70 μm) obtained with Spitzer in the Great Observatories Origins Deep Survey (GOODS) and Far Infrared Deep Extragalactic Legacy survey (FIDEL) fields to derive the evolution of the rest-frame 15 μm, 35 μm, and total infrared luminosity functions of galaxies spanning z < 1.3. We thereby quantify the fractional contribution of infrared luminous galaxies to the comoving star formation rate density over this redshift range. In comparison with previous studies, the present one takes advantage of deep 70 μm observations that provide a more robust infrared luminosity indicator than 24 μm affected by the emission of PAHs at high redshift (z ∼ 1), and we use several independent fields to control cosmic variance. Methods. We used a new extraction technique based on the well-determined positions of galaxies at shorter wavelengths to extract the 24 and 70 μm flux densities of galaxies. It is found that sources separated by a minimum of 0.5 x FWHM are deblended by this technique, which facilitates multi-wavelength associations of counterparts. Using a combination of photometric and spectroscopic redshifts that exist for ∼80% of the sources in our sample, we are able to estimate the rest-frame luminosities of galaxies at 15 μm and 35 μm. By complementing direct detections with a careful stacking analysis, we measured the mid- and far-infrared luminosity functions of galaxies over a factor ∼100 in luminosity (1011 L ⊙ <∼ L IR <∼ 10 13 L ⊙ ) at z < 1.3. A stacking analysis was performed to validate the bolometric corrections and to compute comoving star-formation rate densities in three redshift bins 0.4 < z < 0.7, 0.7 < z < 1.0 and, 1.0 < z < 1.3. Results. We find that the average infrared spectral energy distribution of galaxies over the last 2/3 of the cosmic time is consistent with that of local galaxies, although individual sources do present significant scatter. We also measured both the bright and faint ends of the infrared luminosity functions and find no evidence for a change in the slope of the double power law used to characterize the luminosity function. The redshift evolution of infrared luminous galaxies is consistent with pure luminosity evolution proportional to (1 + z ) 3.6±0.4 up to z ∼ 1.3. We do not find evidence of differential evolution between LIRGs and ULIRGs up to z ∼ 1.3, in contrast with previous claims. The comoving number density of infrared luminous galaxies has increased by a factor of ∼100 between 0 < z < 1. By z ∼ 1.0, LIRGs produce half of the total comoving infrared luminosity density.

[1]  Patrick Shopbell,et al.  Caltech Faint Galaxy Redshift Survey. X. A Redshift Survey in the Region of the Hubble Deep Field North , 2000 .

[2]  Mark Dickinson,et al.  The Great Observatories Origins Deep Survey , 2002, astro-ph/0204213.

[3]  Cong Xu Local Luminosity Function at 15 pm and Galaxy Evolution Seen by ISOCAM 15 pm Surveys , 2000 .

[4]  Martin J. Rees,et al.  Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources , 1998, astro-ph/9809058.

[5]  Christopher D. Martin,et al.  Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.

[6]  NOAO,et al.  Spitzer Mid- to Far-Infrared Flux Densities of Distant Galaxies , 2007, 0706.2164.

[7]  J. Surace,et al.  The IRAS Revised Bright Galaxy Sample , 2003, astro-ph/0306263.

[8]  P. R. M. Eisenhardt,et al.  The Nature of Faint 24 Micron Sources Seen in Spitzer Space Telescope Observations of ELAIS-N1 , 2004 .

[9]  C. Kochanek,et al.  Estimating the total infrared luminosity of galaxies up to z ∼ 2 from mid- and far-infrared observations , 2007, 0712.0965.

[10]  A. Fontana,et al.  The K20 survey. VII. The spectroscopic catalogue: spectral properties and evolution of the galaxy population ⋆, ⋆⋆ , 2005, astro-ph/0504248.

[11]  G. Rieke,et al.  POLYCYCLIC AROMATIC HYDROCARBON CONTRIBUTION TO THE INFRARED OUTPUT ENERGY OF THE UNIVERSE AT z 2 , 2004, astro-ph/0406016.

[12]  A. Mazure,et al.  The VIMOS VLT deep survey , 2008, 0903.0271.

[13]  D. M. Alexander,et al.  The Chandra Deep Field North Survey. XIV. X-Ray-detected Obscured AGNs and Starburst Galaxies in the Bright Submillimeter Source Population , 2003 .

[14]  W. N. B. randt,et al.  The Chandra Deep Field-north Survey. Xiv. X-ray Detected Obscured Agns and Starburst Galaxies in the Bright Submm Source Population , 2002 .

[15]  Cea,et al.  An ISOCAM survey through gravitationally lensing galaxy clusters. I. Source lists and source counts , 2003, astro-ph/0305400.

[16]  H. Dole,et al.  Modelling infrared galaxy evolution using a phenomenological approach , 2002, astro-ph/0209115.

[17]  A. Cimatti,et al.  A catalogue of the Chandra Deep Field South with multi-colour classification and photometric redshifts from COMBO-17 , 2004, astro-ph/0403666.

[18]  J. Huchra,et al.  The Local Luminosity Function at 25 Microns , 1998, astro-ph/9803149.

[19]  D. Elbaz,et al.  Spitzer 70 Micron Source Counts in GOODS-North , 2006, astro-ph/0606676.

[20]  A. M. Hopkins,et al.  On the Evolution of Star-forming Galaxies , 2004, astro-ph/0407170.

[21]  G. Helou,et al.  The Infrared Luminosity Function of Galaxies at Redshifts z = 1 and z ~ 2 in the GOODS Fields , 2007, astro-ph/0701283.

[22]  Orsay,et al.  The 24 Micron Source Counts in Deep Spitzer Space Telescope Surveys , 2004, astro-ph/0406035.

[23]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[24]  P. Capak,et al.  A Large Sample of Spectroscopic Redshifts in the ACS-GOODS Region of the Hubble Deep Field North , 2004, astro-ph/0401354.

[25]  D. M. Alexander,et al.  The Extended Chandra Deep Field-South Survey: Chandra Point-Source Catalogs , 2005, astro-ph/0506607.

[26]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[27]  D. M. Alexander,et al.  The Fall of AGN and the Rise of Star-Forming Galaxies: A Close Look at the Chandra Deep Field X-ray Number , 2004 .

[28]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[29]  F. Masci,et al.  Models for Multiband Infrared Surveys , 2000, astro-ph/0009220.

[30]  I. Smail,et al.  The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets , 2006, astro-ph/0607355.

[31]  David Elbaz,et al.  The Bulk of the Cosmic Infrared Background Resolved by ISOCAM , 2002, astro-ph/0201328.

[32]  D. Padgett,et al.  Spitzer 70 and 160 μm Observations of the Extragalactic First Look Survey , 2005, astro-ph/0509649.

[33]  J. Newman,et al.  The Team Keck Treasury Redshift Survey of the GOODS-North Field , 2004, astro-ph/0401353.

[34]  A long-wavelength view on galaxy evolution from deep surveys by the Infrared Space Observatory , 2001, astro-ph/0108292.

[35]  L. Moustakas,et al.  The Nature of Faint 24 µ m sources Seen in Spitzer Observations of ELAIS-N1 , 2004 .

[36]  D. Elbaz,et al.  The AGN contribution to mid-infrared surveys. X-ray counterparts of the mid-IR sources in the Lockman Hole and HDF-N , 2001, astro-ph/0111412.

[37]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[38]  B. Mobasher,et al.  The Far-Infrared Luminosity Function from GOODS-North: Constraining the Evolution of Infrared Galaxies for z ≤ 1 , 2007, 0707.4505.

[39]  M. Stiavelli,et al.  Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep High-z Surveys , 2007, 0712.0398.

[40]  L. Kewley,et al.  Infrared Spectral Energy Distributions of Nearby Galaxies , 2005, astro-ph/0507645.

[41]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[42]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[43]  Institut d'Astrophysique Spatiale,et al.  Photometric redshifts from evolutionary synthesis with PÉGASE: The code Z-PEG and the z=0 age constraint , 2002 .

[44]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2002, astro-ph/0205085.

[45]  Mullard Space Science Laboratory,et al.  The Star Formation History of the Universe as Revealed by Deep Radio Observations , 2008, 0802.4105.

[46]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[47]  F. Castander,et al.  The Multiwavelength Survey by Yale-Chile (MUSYC): Survey Design and Deep Public UBVRIz' Images and Catalogs of the Extended Hubble Deep Field-South* , 2005, astro-ph/0509202.

[48]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[49]  T. Budavari,et al.  The GALEX-VVDS Measurement of the Evolution of the Far-Ultraviolet Luminosity Density and the Cosmic Star Formation Rate , 2004, astro-ph/0411424.

[50]  D. Elbaz,et al.  The star formation history of luminous infrared galaxies , 2006, astro-ph/0605642.

[51]  M. Scodeggio,et al.  THE DUST-UNBIASED COSMIC STAR-FORMATION HISTORY FROM THE 20 CM VLA-COSMOS SURVEY , 2008, 0808.0493.

[52]  The Far- and Mid-Infrared/Radio Correlations in the Spitzer Extragalactic First Look Survey , 2004, astro-ph/0406030.

[53]  Astronomy,et al.  The Calibration of Mid-Infrared Star Formation Rate Indicators , 2007, 0705.3377.

[54]  The VIMOS VLT Deep Survey. Public release of 1599 redshifts to IAB<=24 across the Chandra Deep Field , 2004, astro-ph/0403628.

[55]  Cong Xu,et al.  Local Luminosity Function at 15 Microns and Galaxy Evolution Seen by ISOCAM 15 Micron Surveys , 2000, astro-ph/0004216.

[56]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .

[57]  J. Rhodes,et al.  A deep Chandra survey of the Groth Strip - I. The X-ray data , 2004, astro-ph/0410149.