On partitioning the edges of 1-plane graphs

Abstract A 1-plane graph is a graph embedded in the plane such that each edge is crossed at most once. A 1-plane graph is optimal if it has maximum edge density. A red–blue edge coloring of an optimal 1-plane graph G partitions the edge set of G into blue edges and red edges such that no two blue edges cross each other and no two red edges cross each other. We prove the following: ( i ) Every optimal 1-plane graph has a red–blue edge coloring such that the blue subgraph is maximal planar while the red subgraph has vertex degree at most four; this bound on the vertex degree is worst-case optimal. ( ii ) A red–blue edge coloring may not always induce a red forest of bounded vertex degree. Applications of these results to graph augmentation and graph drawing are also discussed.

[1]  Július Czap,et al.  On Drawings and Decompositions of 1-Planar Graphs , 2013, Electron. J. Comb..

[2]  János Pach,et al.  Graphs drawn with few crossings per edge , 1997, Comb..

[3]  Goos Kant,et al.  Triangulating Planar Graphs while Minimizing the Maximum Degree , 1992, Inf. Comput..

[4]  Giuseppe Liotta,et al.  Embedding-Preserving Rectangle Visibility Representations of Nonplanar Graphs , 2015, Discrete & Computational Geometry.

[5]  David Eppstein,et al.  On the Density of Maximal 1-Planar Graphs , 2012, Graph Drawing.

[6]  Carsten Thomassen,et al.  Rectilinear drawings of graphs , 1988, J. Graph Theory.

[7]  Stephen G. Kobourov,et al.  Straight-Line Grid Drawings of 3-Connected 1-Planar Graphs , 2013, Graph Drawing.

[8]  Giuseppe Liotta,et al.  A linear time algorithm for testing maximal 1-planarity of graphs with a rotation system , 2013, Theor. Comput. Sci..

[9]  Vladimir P. Korzhik,et al.  Minimal Obstructions for 1‐Immersions and Hardness of 1‐Planarity Testing , 2009, J. Graph Theory.

[10]  Daniel Gonçalves,et al.  Edge partition of planar sraphs into two outerplanar graphs , 2005, STOC '05.

[11]  K. Wagner,et al.  Bemerkungen zu einem Sechsfarbenproblem von G. Ringel , 1983 .

[12]  Charles J. Colbourn,et al.  Partitioning the Edges of a Planar Graph into Two Partial K-Trees , 1988 .

[13]  Sue Whitesides,et al.  Rectangle Visibility Graphs: Characterization, Construction, and Compaction , 2003, STACS.

[14]  Eyal Ackerman A note on 1-planar graphs , 2014, Discret. Appl. Math..

[15]  Therese C. Biedl,et al.  Height-Preserving Transformations of Planar Graph Drawings , 2014, GD.

[16]  Tomás Madaras,et al.  The structure of 1-planar graphs , 2007, Discret. Math..

[17]  André Raspaud,et al.  Acyclic colouring of 1-planar graphs , 2001, Discret. Appl. Math..

[18]  Franz-Josef Brandenburg On 4-Map Graphs and 1-Planar Graphs and their Recognition Problem , 2015, ArXiv.

[19]  Prosenjit Bose,et al.  On Rectangle Visibility Graphs , 1996, GD.

[20]  Yusuke Suzuki,et al.  Optimal 1-planar graphs which triangulate other surfaces , 2010, Discret. Math..

[21]  Alexander Grigoriev,et al.  Algorithms for Graphs Embeddable with Few Crossings per Edge , 2005, Algorithmica.

[22]  Zhi-Zhong Chen,et al.  Map graphs , 1999, JACM.

[23]  Kiran S. Kedlaya Outerplanar Partitions of Planar Graphs , 1996, J. Comb. Theory, Ser. B.

[24]  Yusuke Suzuki Re-embeddings of Maximum 1-Planar Graphs , 2010, SIAM J. Discret. Math..

[25]  Bogdan Oporowski,et al.  Surfaces, Tree-Width, Clique-Minors, and Partitions , 2000, J. Comb. Theory, Ser. B.

[26]  Walter Didimo Density of straight-line 1-planar graph drawings , 2013, Inf. Process. Lett..

[27]  Walter Didimo,et al.  Recognizing and drawing IC-planar graphs , 2015, Theor. Comput. Sci..

[28]  Giuseppe Liotta,et al.  Fáry's Theorem for 1-Planar Graphs , 2012, COCOON.

[29]  Patrice Ossona de Mendez,et al.  Regular Orientations, Arboricity, and Augmentation , 1994, Graph Drawing.

[30]  Thomas C. Shermer,et al.  On Rectangle Visibility Graphs. III. External Visibility and Complexity , 1996, CCCG.

[31]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[32]  K. Wagner,et al.  Über 1-optimale Graphen , 1984 .

[33]  Giuseppe Liotta,et al.  Right angle crossing graphs and 1-planarity , 2013, Discret. Appl. Math..

[34]  Patrice Ossona de Mendez,et al.  A left-first search algorithm for planar graphs , 1995, Discret. Comput. Geom..

[35]  Franz-Josef Brandenburg,et al.  Journal of Graph Algorithms and Applications 1-planarity of Graphs with a Rotation System 68 Auer Et Al. 1-planarity of Graphs with a Rotation System , 2022 .

[36]  Stephen G. Kobourov,et al.  Contact Representations of Graphs in 3D , 2015, WADS.

[37]  G. Chartrand,et al.  Graphs with Forbidden Subgraphs , 1971 .