On-line Parameter Estimation via Algebraic Method: An Experimental Illustration

This article presents an algebraic online parameters estimation method for linear time invariant LTI systems, subject to polynomial perturbations. Particular attention is given to practical implementation. The estimator may be expressed as a simple finite impluse response FIR filter, which is advantageous for online application, since the coefficients may be computed offline. The robustification against possible singularities is shown, the approach has the advantage to eliminate singularities that may occur in the experimental identification. This algorithm is illustrated experimentally on a permanent magnet stepper motor PMSM and a magnetic bearing for which parametric estimation is known to be a difficult task. The parameters to be estimated are sometimes measurable with difficulty and may vary slightly over time.

[1]  Hebertt Sira-Ramírez,et al.  A PASSIVITY PLUS FLATNESS CONTROLLER FOR THE PERMANENT MAGNET STEPPER MOTOR , 2000 .

[2]  Joachim Rudolph,et al.  Algebraic Parameter Identification and Asymptotic Estimation of the Load of a Boost Converter , 2008, IEEE Transactions on Industrial Electronics.

[3]  Cédric Join,et al.  Algebraic change-point detection , 2009, Applicable Algebra in Engineering, Communication and Computing.

[4]  Alessandro Pisano,et al.  Finite-time converging jump observer for switched linear systems with unknown inputs ☆ , 2011 .

[5]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[6]  Olivier Gibaru,et al.  Error analysis of Jacobi derivative estimators for noisy signals , 2011, Numerical Algorithms.

[7]  R. H. Park,et al.  Two-reaction theory of synchronous machines generalized method of analysis-part I , 1929, Transactions of the American Institute of Electrical Engineers.

[8]  Hebertt Sira-Ramírez,et al.  Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques , 2007 .

[9]  Michel Fliess,et al.  Parameters estimation of systems with delayed and structured entries , 2009, Autom..

[10]  Wilfrid Perruquetti,et al.  Algebraic parameter estimation of a biased sinusoidal waveform signal from noisy data , 2012 .

[11]  Alberto Luviano-Juarez,et al.  Algebraic parameter identification for induction motors , 2011, IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society.

[12]  Jean-Pierre Barbot,et al.  Iterative higher order sliding mode observer for nonlinear systems with unknown inputs , 2010 .

[13]  Vicente Feliú Batlle,et al.  An algebraic frequency estimator for a biased and noisy sinusoidal signal , 2007, Signal Process..

[14]  Vicente Feliú Batlle,et al.  Nonlinear Control for Magnetic Levitation Systems Based on Fast Online Algebraic Identification of the Input Gain , 2011, IEEE Transactions on Control Systems Technology.

[15]  Alessandro Pisano,et al.  Contact force estimation and regulation in active pantographs: An algebraic observability approach , 2011 .

[16]  T. Floquet,et al.  Parameter estimation via second order sliding modes with application to thermal modelling in a high speed rotating machine , 2006, 2006 IEEE International Conference on Industrial Technology.

[17]  Mamadou Mboup,et al.  Différenciation numérique multivariable I : estimateurs algébriques et structure , 2010 .

[18]  Wilfrid Perruquetti,et al.  Fast state estimation in linear time-varying systems: An algebraic approach , 2008, 2008 47th IEEE Conference on Decision and Control.

[19]  J. Rudolph,et al.  An algebraic approach to parameter identification in linear infinite dimensional systems , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[20]  John N. Chiasson,et al.  High-performance nonlinear feedback control of a permanent magnet stepper motor , 1993, IEEE Trans. Control. Syst. Technol..

[21]  Maria Letizia Corradini,et al.  A Quasi‐Sliding Mode Observer‐based Controller for PMSM Drives , 2013 .

[22]  Wilfrid Perruquetti,et al.  Estimation problems for a class of impulsive systems , 2011 .

[23]  M. Mboup Parameter estimation for signals described by differential equations , 2009 .

[24]  Cédric Join,et al.  Numerical differentiation with annihilators in noisy environment , 2009, Numerical Algorithms.

[25]  Romain Delpoux,et al.  Parameter estimation of permanent magnet stepper motors without position or velocity sensors , 2012, 2012 American Control Conference (ACC).

[26]  John N. Chiasson,et al.  High-speed parameter estimation of stepper motors , 1993, IEEE Trans. Control. Syst. Technol..

[27]  Hebertt Sira-Ramírez,et al.  A comparison between the algebraic and the reduced order observer approaches for on-line load torque estimation in a unit power factor rectifier-DC motor system , 2012 .

[28]  T. Grochmal,et al.  Control of a self-bearing servomotor , 2009, IEEE Control Systems.

[29]  Alexander Verl,et al.  Torque maximization for permanent magnet synchronous motors , 1997, 1997 European Control Conference (ECC).

[30]  Christophe Pouzat,et al.  An Algebraic Method for Eye Blink Artifacts Detection in Single Channel EEG Recordings , 2010 .

[31]  Sergio M. Savaresi,et al.  On the parametrization and design of an extended Kalman filter frequency tracker , 2000, IEEE Trans. Autom. Control..

[32]  M. Fliess,et al.  An algebraic framework for linear identification , 2003 .