Assessing the performance limits of internal coronagraphs through end-to-end modeling

As part of the NASA ROSES Technology Demonstrations for Exoplanet Missions (TDEM) program, we conducted a numerical modeling study of three internal coronagraphs (PIAA, vector vortex, hybrid bandlimited) to understand their behaviors in realistically-aberrated systems with wavefront control (deformable mirrors). This investigation consisted of two milestones: (1) develop wavefront propagation codes appropriate for each coronagraph that are accurate to 1% or better (compared to a reference algorithm) but are also time and memory efficient, and (2) use these codes to determine the wavefront control limits of each architecture. We discuss here how the milestones were met and identify some of the behaviors particular to each coronagraph. The codes developed in this study are being made available for community use. We discuss here results for the HBLC and VVC systems, with PIAA having been discussed in a previous proceeding.

[1]  Olivier Guyon,et al.  End-to-end simulations of different coronagraphic techniques , 2009, Optical Engineering + Applications.

[2]  J. Green,et al.  Reflectivity and optical surface height requirements in a broadband coronagraph. 1. Contrast floor due to controllable spatial frequencies. , 2006, Applied optics.

[3]  John E. Krist,et al.  Studying a simple TPF-C , 2006, SPIE Astronomical Telescopes + Instrumentation.

[4]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[5]  L. Pueyo,et al.  Optimal dark hole generation via two deformable mirrors with stroke minimization. , 2009, Applied optics.

[6]  Robert J. Vanderbei,et al.  Diffraction-based Sensitivity Analysis of Apodized Pupil-mapping Systems , 2006 .

[7]  R. Vanderbei,et al.  Optimal pupil apodizations of arbitrary apertures for high-contrast imaging. , 2011, Optics express.

[8]  Robert Bates,et al.  Polarization analysis for Terrestrial Planet Finder coronagraph designs , 2004, SPIE Optics + Photonics.

[9]  Mark Clampin,et al.  TPF-C: status and recent progress , 2006, SPIE Astronomical Telescopes + Instrumentation.

[10]  Brian J. Bauman,et al.  An end-to-end polychromatic Fresnel propagation model of GPI , 2008, Astronomical Telescopes + Instrumentation.

[11]  J. P. Laboratory,et al.  High-Contrast Imaging from Space: Speckle Nulling in a Low-Aberration Regime , 2005, astro-ph/0510597.

[12]  Amir Give'on,et al.  Broadband wavefront correction algorithm for high-contrast imaging systems , 2007, SPIE Optical Engineering + Applications.

[13]  Olivier Absil,et al.  Taking the vector vortex coronagraph to the next level for ground- and space-based exoplanet imaging instruments: review of technology developments in the USA, Japan, and Europe , 2011, Optical Engineering + Applications.

[14]  W. A. Traub,et al.  Pupil Mapping in Two Dimensions for High-Contrast Imaging , 2004, astro-ph/0412045.

[15]  N. Jeremy Kasdin,et al.  Polychromatic compensation of propagated aberrations for high-contrast imaging , 2007 .

[16]  Marcia J. Rieke,et al.  Hunting planets and observing disks with the JWST NIRCam coronagraph , 2007, SPIE Optical Engineering + Applications.

[17]  Gopal Vasudevan,et al.  Visible Nulling Coronagraphy for Exo-Planetary Detection and Characterization , 2005, Proceedings of the International Astronomical Union.

[18]  Olivier Guyon,et al.  First results on a new PIAA coronagraph testbed at NASA Ames , 2009, Optical Engineering + Applications.

[19]  John E. Krist,et al.  The Vector Vortex Coronagraph: sensitivity to central obscuration, low-order aberrations, chromaticism, and polarization , 2010, Astronomical Telescopes + Instrumentation.

[20]  Olivier Guyon,et al.  ACCESS: a NASA mission concept study of an Actively Corrected Coronagraph for Exoplanet System Studies , 2008, Astronomical Telescopes + Instrumentation.

[21]  Dimitri Mawet,et al.  Infrared achromatic phase shifters using modulated total internal reflection , 2006, SPIE Astronomical Telescopes + Instrumentation.

[22]  John E. Krist,et al.  Vector vortex coronagraph: first results in the visible , 2009, Optical Engineering + Applications.

[23]  John E. Krist,et al.  PROPER: an optical propagation library for IDL , 2007, SPIE Optical Engineering + Applications.

[24]  Andrew R. Neureuther,et al.  Evaluating the end-to-end performance of TPF-C with vector propagation models: Part I. Pupil mask effects , 2005, SPIE Optics + Photonics.

[25]  Robert J. Vanderbei,et al.  Diffraction Analysis of Two-dimensional Pupil Mapping for High-Contrast Imaging , 2005, astro-ph/0506550.

[26]  R. Vanderbei,et al.  Fast computation of Lyot-style coronagraph propagation. , 2007, Optics express.

[27]  Dimitri P. Mawet Annular Groove Phase Mask: An Achromatic Vortex Coronagraph Intended at Differential Polarimetric Imaging , 2007 .

[28]  Luis Marchen,et al.  Deep UV to NIR space telescopes and exoplanet coronagraphs: a trade study on throughput, polarization, mirror coating options and requirements , 2011, Optical Engineering + Applications.

[29]  Alexis Carlotti,et al.  Progress on broadband control and deformable mirror tolerances in a 2-DM system , 2010, Astronomical Telescopes + Instrumentation.

[30]  Dimitri Mawet,et al.  Recent results of the second generation of vector vortex coronagraphs on the high-contrast imaging testbed at JPL , 2011, Optical Engineering + Applications.

[31]  Kjetil Dohlen,et al.  FOROS: Fresnel optical propagation code for SPHERE , 2010, Astronomical Telescopes + Instrumentation.

[32]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. I. Principle , 2004, astro-ph/0412179.

[33]  Stuart B. Shaklan,et al.  Polarization compensating protective coatings for TPF-Coronagraph optics to control contrast degrading cross polarization leakage , 2005, SPIE Optics + Photonics.

[34]  John E. Krist,et al.  Extraction of extrasolar planet spectra from realistically simulated wavefront-corrected coronagraphic fields , 2008, Astronomical Telescopes + Instrumentation.

[35]  W. Traub,et al.  A Coronagraph with a Band-limited Mask for Finding Terrestrial Planets , 2002, astro-ph/0203455.

[36]  Dwight Moody,et al.  Design and demonstration of hybrid Lyot coronagraph masks for improved spectral bandwidth and throughput , 2008, Astronomical Telescopes + Instrumentation.

[37]  David M. Shemo,et al.  Optical Vectorial Vortex Coronagraphs using Liquid Crystal Polymers: theory, manufacturing and laboratory demonstration. , 2009, Optics express.

[38]  John E. Krist,et al.  Assessing the performance limits of internal coronagraphs through end-to-end modeling: a NASA TDEM study , 2011, Optical Engineering + Applications.

[39]  Olivier Guyon,et al.  Phase-induced amplitude apodization (PIAA) coronagraph testing at the High Contrast Imaging Testbed , 2009, Optical Engineering + Applications.

[40]  Amir Give'on,et al.  Pair-wise, deformable mirror, image plane-based diversity electric field estimation for high contrast coronagraphy , 2011, Optical Engineering + Applications.

[41]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. III. Diffraction Effects and Coronagraph Design , 2006 .

[42]  John E. Krist,et al.  Practical numerical propagation of arbitrary wavefronts through PIAA optics , 2010, Astronomical Telescopes + Instrumentation.

[43]  Olivier Guyon,et al.  PIAA coronagraph design: system optimization and first optics testing , 2006, SPIE Astronomical Telescopes + Instrumentation.

[44]  R. Vanderbei,et al.  Spiderweb Masks for High-Contrast Imaging , 2003, astro-ph/0303049.

[45]  Kjetil Dohlen,et al.  System study of EPICS: the exoplanets imager for the E-ELT , 2010, Astronomical Telescopes + Instrumentation.

[46]  Fang Shi,et al.  Laboratory demonstrations of high-contrast imaging for space coronagraphy , 2007, SPIE Optical Engineering + Applications.

[47]  Johannes H. A. Krist,et al.  JPL Document D-66100 TECHNOLOGY DEVELOPMENT FOR EXOPLANET MISSIONS Assessing the performance limits of internal coronagraphs through end-to-end modeling Technology Milestone #1 Whitepaper , 2011 .

[48]  Amir Give'on,et al.  Numerical propagator through PIAA optics , 2009, Optical Engineering + Applications.