Smearings of States Defined on Sharp Elements Onto Effect Algebras
暂无分享,去创建一个
[1] Zdenka Riečanová,et al. Generalization of Blocks for D-Lattices and Lattice-Ordered Effect Algebras , 2000 .
[2] Zdenka Riečanová. Order-topological separable complete modular ortholattices admit order continuous faithful valuations , 1998 .
[3] Zdenka Riečanová. Proper Effect Algebras Admitting No States , 2001 .
[4] Gejza Jenča. Blocks of homogeneous effect algebras , 2001 .
[5] David J. Foulis,et al. Phi-symmetric effect algebras , 1995 .
[6] G. Grätzer. General Lattice Theory , 1978 .
[7] Zdenka Riečanová. Lattice effect algebras with (o)-continuous faithful valuations , 2001, Fuzzy Sets Syst..
[8] Stanley Gudder,et al. S-Dominating Effect Algebras , 1998 .
[9] Effect Algebras and Para-Boolean Manifolds , 2000 .
[10] Richard J. Greechie,et al. Orthomodular Lattices Admitting No States , 1971 .
[11] Zdenka Riečanová. ORTHOGONAL SETS IN EFFECT ALGEBRAS , 2001 .
[12] Sylvia Pulmannová,et al. Orthomodular structures as quantum logics , 1991 .
[13] R. J. Greechie,et al. The center of an effect algebra , 1995 .
[14] D. Foulis,et al. Effect algebras and unsharp quantum logics , 1994 .
[15] MacNeille Completions of D-Posets and Effect Algebras , 2000 .
[16] Zdenka Riečanová,et al. Sharp Elements in Effect Algebras , 2001 .
[17] C. Chang,et al. Algebraic analysis of many valued logics , 1958 .