On First-Order Model-Based Reasoning

Reasoning semantically in first-order logic is notoriously a challenge. This paper surveys a selection of semantically-guided or model-based methods that aim at meeting aspects of this challenge. For first-order logic we touch upon resolution-based methods, tableaux-based methods, DPLL-inspired methods, and we give a preview of a new method called SGGS, for Semantically-Guided Goal-Sensitive reasoning. For first-order theories we highlight hierarchical and locality-based methods, concluding with the recent Model-Constructing satisfiability calculus.

[1]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[2]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[3]  Larry Wos,et al.  Efficiency and Completeness of the Set of Support Strategy in Theorem Proving , 1965, JACM.

[4]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[5]  James R. Slagle,et al.  Automatic Theorem Proving With Renamable and Semantic Resolution , 1967, JACM.

[6]  L. Wos Review: James R. Slagle, Automatic Theorem Proving with Renamable and Semantic Resolution , 1970, Journal of Symbolic Logic.

[7]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[8]  Greg Nelson,et al.  Simplification by Cooperating Decision Procedures , 1979, TOPL.

[9]  Mark E. Stickel,et al.  Complete Sets of Reductions for Some Equational Theories , 1981, JACM.

[10]  L. Wos,et al.  Paramodulation and Theorem-Proving in First-Order Theories with Equality , 1983 .

[11]  J. A. Robinson,et al.  Automatic Deduction with Hyper-Resolution , 1983 .

[12]  Greg Nelson,et al.  Combining satisability procedures by equality-sharing , 1984 .

[13]  Lawrence J. Henschen,et al.  What Is Automated Theorem Proving? , 1985, J. Autom. Reason..

[14]  Hélène Kirchner,et al.  Completion of a Set of Rules Modulo a Set of Equations , 1986, SIAM J. Comput..

[15]  Michaël Rusinowitch,et al.  Complete Inference Rules for the Cancellation Laws , 1987, IJCAI.

[16]  Joseph A. Goguen,et al.  Order-Sorted Unification , 1989, J. Symb. Comput..

[17]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[18]  Michaël Rusinowitch Theorem-Proving with Resolution and Superposition , 1991, J. Symb. Comput..

[19]  Michaël Rusinowitch,et al.  Proving refutational completeness of theorem-proving strategies: the transfinite semantic tree method , 1991, JACM.

[20]  Claude Kirchner,et al.  Solving Equations in Abstract Algebras: A Rule-Based Survey of Unification , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[21]  Daniel J. Rosenkrantz,et al.  Sufficient-completeness, ground-reducibility and their complexity , 1992 .

[22]  José Meseguer,et al.  Order-Sorted Algebra I: Equational Deduction for Multiple Inheritance, Overloading, Exceptions and Partial Operations , 1992, Theor. Comput. Sci..

[23]  Wayne Snyder,et al.  Designing Unification Procedures Using Transformations: A Survey , 1992 .

[24]  D. Plaisted Equational reasoning and term rewriting systems , 1993 .

[25]  Deepak Kapur,et al.  An automated tool for analyzing completeness of equational specifications , 1994, ISSTA '94.

[26]  Harald Ganzinger,et al.  Rewrite-Based Equational Theorem Proving with Selection and Simplification , 1994, J. Log. Comput..

[27]  William McCune,et al.  SCOTT: Semantically Constrained Otter System Description , 1994, CADE.

[28]  Maria Paola Bonacina,et al.  Towards a Foundation of Completion Procedures as Semidecision Procedures , 1995, Theor. Comput. Sci..

[29]  Peter Baumgartner,et al.  Hyper Tableaux , 1996, JELIA.

[30]  H. Ganzinger,et al.  Theorem proving in cancellative abelian monoids , 1996 .

[31]  J. Urgen Stuber,et al.  Superposition Theorem Proving for Abelian Groups Represented as Integer Modules , 1996 .

[32]  Karem A. Sakallah,et al.  GRASP—a new search algorithm for satisfiability , 1996, ICCAD 1996.

[33]  Harald Ganzinger,et al.  Theorem Proving in Cancellative Abelian Monoids (Extended Abstract) , 1996, CADE.

[34]  Joao Marques-Silva,et al.  GRASP-A new search algorithm for satisfiability , 1996, Proceedings of International Conference on Computer Aided Design.

[35]  Peter Baumgartner,et al.  Semantically Guided Theorem Proving for Diagnosis Applications , 1997, IJCAI.

[36]  Jürgen Stuber,et al.  Superposition Theorem Proving for Abelian Groups Represented as Integer Modules , 1996, Theor. Comput. Sci..

[37]  Harald Ganzinger,et al.  Ordered chaining calculi for first-order theories of transitive relations , 1998, JACM.

[38]  Uwe Waldmann,et al.  Superposition for Divisible Torsion-Free Abelian Groups , 1998, CADE.

[39]  W. Bibel,et al.  Automated deduction : a basis for applications , 1998 .

[40]  David A. Plaisted,et al.  The Efficiency of Theorem Proving Strategies , 1999, Computational Intelligence.

[41]  Maria Paola Bonacina,et al.  A Taxonomy of Theorem-Proving Strategies , 1999, Artificial Intelligence Today.

[42]  Chandrabose Aravindan,et al.  Theorem Proving Techniques for View Deletion in Databases , 2000, J. Symb. Comput..

[43]  M. Moskewicz,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[44]  J. A. Robinson,et al.  Handbook of Automated Reasoning (in 2 volumes) , 2001 .

[45]  Sharad Malik,et al.  The Quest for Efficient Boolean Satisfiability Solvers , 2002, CAV.

[46]  William McCune,et al.  OTTER 3.3 Reference Manual , 2003, ArXiv.

[47]  David A. Plaisted,et al.  Ordered Semantic Hyper-Linking , 1997, Journal of Automated Reasoning.

[48]  David A. Plaisted,et al.  Eliminating duplication with the hyper-linking strategy , 1992, Journal of Automated Reasoning.

[49]  Harald Ganzinger,et al.  Refutational theorem proving for hierarchic first-order theories , 1994, Applicable Algebra in Engineering, Communication and Computing.

[50]  Daniel J. Rosenkrantz,et al.  Sufficient-completeness, ground-reducibility and their complexity , 1991, Acta Informatica.

[51]  Viorica Sofronie-Stokkermans,et al.  Hierarchic Reasoning in Local Theory Extensions , 2005, CADE.

[52]  José Meseguer,et al.  A Sufficient Completeness Reasoning Tool for Partial Specifications , 2005, RTA.

[53]  José Meseguer,et al.  A Sufficient Completeness Checker for Linear Order-Sorted Specifications Modulo Axioms , 2006, IJCAR.

[54]  Cesare Tinelli,et al.  Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T) , 2006, JACM.

[55]  Peter Baumgartner,et al.  Implementing the Model Evolution Calculus , 2006, Int. J. Artif. Intell. Tools.

[56]  Harald Ganzinger,et al.  Modular proof systems for partial functions with Evans equality , 2006, Inf. Comput..

[57]  Mnacho Echenim,et al.  Permutative rewriting and unification , 2007, Inf. Comput..

[58]  Viorica Sofronie-Stokkermans,et al.  Hierarchical and Modular Reasoning in Complex Theories: The Case of Local Theory Extensions , 2007, FroCoS.

[59]  Vladimir Lifschitz,et al.  Handbook of Knowledge Representation Edited Knowledge Representation and Classical Logic , 2022 .

[60]  José Meseguer,et al.  Variant Narrowing and Equational Unification , 2009, WRLA.

[61]  Viorica Sofronie-Stokkermans,et al.  Interpolation in Local Theory Extensions , 2006, Log. Methods Comput. Sci..

[62]  Boris Motik,et al.  HermiT: A Highly-Efficient OWL Reasoner , 2008, OWLED.

[63]  Peter Baumgartner,et al.  The model evolution calculus as a first-order DPLL method , 2008, Artif. Intell..

[64]  Carsten Ihlemann,et al.  On Local Reasoning in Verification , 2008, TACAS.

[65]  Maria Paola Bonacina,et al.  On semantic resolution with lemmaizing and contraction and a formal treatment of caching , 1998, New Generation Computing.

[66]  Cesare Tinelli,et al.  Satisfiability Modulo Theories , 2021, Handbook of Satisfiability.

[67]  Peter Baumgartner,et al.  Superposition and Model Evolution Combined , 2009, CADE.

[68]  Sharad Malik,et al.  Boolean satisfiability from theoretical hardness to practical success , 2009, Commun. ACM.

[69]  Ernst Althaus,et al.  Superposition Modulo Linear Arithmetic SUP(LA) , 2009, FroCoS.

[70]  Maria Paola Bonacina,et al.  On Deciding Satisfiability by Theorem Proving with Speculative Inferences , 2011, Journal of Automated Reasoning.

[71]  Peter Baumgartner,et al.  The Hyper Tableaux Calculus with Equality and an Application to Finite Model Computation , 2010, J. Log. Comput..

[72]  Carsten Ihlemann,et al.  On Hierarchical Reasoning in Combinations of Theories , 2010, IJCAR.

[73]  Maria Paola Bonacina,et al.  Theory decision by decomposition , 2010, J. Symb. Comput..

[74]  Maria Paola Bonacina,et al.  On theorem proving for program checking: historical perspective and recent developments , 2010, PPDP.

[75]  José Meseguer,et al.  Order-sorted Equational Unification Revisited , 2012, Electron. Notes Theor. Comput. Sci..

[76]  Peter Baumgartner,et al.  Model Evolution with equality - Revised and implemented , 2012, J. Symb. Comput..

[77]  Gibbard's Collapse Theorem for the Indicative Conditional: An Axiomatic Approach , 2013, Automated Reasoning and Mathematics.

[78]  Claudia Schon,et al.  System Description: E-KRHyper 1.4 - Extensions for Unique Names and Description Logic , 2013, CADE.

[79]  Peter Baumgartner,et al.  Hierarchic Superposition with Weak Abstraction , 2013, CADE.

[80]  Hantao Zhang,et al.  MACE4 and SEM: A Comparison of Finite Model Generators , 2013, Automated Reasoning and Mathematics.

[81]  Ulrich Furbach,et al.  Semantically Guided Evolution of SHI ABoxes , 2013, TABLEAUX 2013.

[82]  Paulo Oliva,et al.  (Dual) Hoops Have Unique Halving , 2012, Automated Reasoning and Mathematics.

[83]  Clark W. Barrett,et al.  The design and implementation of the model constructing satisfiability calculus , 2013, 2013 Formal Methods in Computer-Aided Design.

[84]  Leonardo Mendonça de Moura,et al.  A Model-Constructing Satisfiability Calculus , 2013, VMCAI.

[85]  Ulrich Furbach,et al.  Semantically Guided Evolution of ABoxes , 2013, TABLEAUX.

[86]  Maria Paola Bonacina,et al.  Constraint manipulation in SGGS , 2014 .

[87]  Maria Paola Bonacina,et al.  On Interpolation in Automated Theorem Proving , 2014, Journal of Automated Reasoning.

[88]  Maria Paola Bonacina,et al.  SGGS Theorem Proving: an Exposition , 2014, PAAR@IJCAR.

[89]  Maria Paola Bonacina,et al.  Semantically-guided goal-sensitive theorem proving , 2014 .

[90]  D. Plaisted,et al.  Semantically-Guided Goal-Sensitive Reasoning: Model Representation , 2016, Journal of Automated Reasoning.

[91]  Lawrence C. Paulson A Mechanised Proof of Gödel’s Incompleteness Theorems Using Nominal Isabelle , 2015, Journal of Automated Reasoning.

[92]  Maria Paola Bonacina,et al.  Interpolation Systems for Ground Proofs in Automated Deduction: a Survey , 2015, Journal of Automated Reasoning.

[93]  Maria Paola Bonacina,et al.  Semantically-Guided Goal-Sensitive Reasoning: Inference System and Completeness , 2017, Journal of Automated Reasoning.