Perturbative theory of the non-equilibrium singlet-triplet transition

We study equilibrium and non-equilibrium properties of a two-level quantum dot close to the singlet-triplet transition. We treat the on-site Coulomb interaction and Hund's rule coupling perturbatively within the Keldysh formalism. We compute the spectral functions and the differential conductance of the dot. For moderate interactions our perturbative approach captures the Kondo effect and many of the experimentally observed properties.

[1]  Nicolas Roch,et al.  Quantum phase transition in a single-molecule quantum dot , 2008, Nature.

[2]  G. Finkelstein,et al.  Zero-bias conductance in carbon nanotube quantum dots. , 2007, Physical review letters.

[3]  A. Aligia Nonequilibrium magnetotransport through a quantum dot: An interpolative perturbative approach , 2006, cond-mat/0607773.

[4]  C. Marcus,et al.  Non-equilibrium singlet–triplet Kondo effect in carbon nanotubes , 2006, cond-mat/0602581.

[5]  J. Kong,et al.  Orbital Kondo effect in carbon nanotubes , 2005, Nature.

[6]  M. Katsnelson,et al.  Kondo resonance for orbitally degenerate systems. , 2004, Physical review letters.

[7]  S. Tarucha,et al.  Enhanced Kondo effect via tuned orbital degeneracy in a spin 1/2 artificial atom , 2004 .

[8]  W. Hofstetter,et al.  Singlet–triplet transition in lateral quantum dots: A numerical renormalization group study , 2003, cond-mat/0306418.

[9]  D. Goldhaber-Gordon,et al.  Kondo effect and spin filtering in triangular artificial atoms , 2003, cond-mat/0302481.

[10]  W. G. van der Wiel,et al.  Two-stage Kondo effect in a quantum dot at a high magnetic field. , 2001, Physical review letters.

[11]  W. Hofstetter,et al.  Quantum phase transition in a multilevel dot. , 2001, Physical review letters.

[12]  A. Yeyati,et al.  Transport in Multilevel Quantum Dots: From the Kondo Effect to the Coulomb Blockade Regime , 1999, cond-mat/9901144.

[13]  O. Sakai,et al.  Kondo Effect in Single Quantum Dot Systems — Study with Numerical Renormalization Group Method — , 1998, cond-mat/9805067.

[14]  Kotliar,et al.  New Iterative Perturbation Scheme for Lattice Models with Arbitrary Filling. , 1995, Physical review letters.

[15]  Flores,et al.  Electron correlation resonances in the transport through a single quantum level. , 1993, Physical review letters.

[16]  Meir,et al.  Landauer formula for the current through an interacting electron region. , 1992, Physical review letters.

[17]  Zlatic,et al.  Finite-temperature spectral density for the Anderson model. , 1987, Physical Review B (Condensed Matter).