Collapsing degrees in subexponential time

We show that there are subexponential deterministic time classes that have collapsing degrees. In particular, we prove the following: Let t be any effectively superpolynomial time bound. Then there is a set A/spl isin/DTIME(t) such that every set B/spl isin/deg/sub msup p/(A) is p-isomorphic to A.<<ETX>>

[1]  Ding-Zhu Du,et al.  A note on one-way functions and polynomial-time isomorphisms , 1986, STOC '86.

[2]  Juris Hartmanis,et al.  One-Way Functions, Robustness, and the Non-Isomorphism of NP-Complete Sets , 1987, Proceeding Structure in Complexity Theory.

[3]  Stuart A. Kurtz,et al.  The isomorphic conjecture fails relative to a random oracle , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[4]  Stuart A. Kurtz,et al.  The ismorphism conjecture fails relative to a random oracle , 1989, STOC '89.

[5]  Paul Young,et al.  Juris Hartmanis: fundamental contributions to isomorphism problems , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[6]  Paul Young,et al.  Some structural properties of polynomial reducibilities and sets in NP , 1983, STOC.

[7]  Stuart A. Kurtz,et al.  Collapsing degrees , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[8]  Stuart A. Kurtz,et al.  The isomorphism conjecture holds relative to an oracle , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[9]  Stuart A. Kurtz,et al.  The Isomorphism Conjecture Holds Relative to an Oracle , 1996, SIAM J. Comput..

[10]  Paul Young,et al.  Reductions Among Polynomial Isomorphism Types , 1985, Theor. Comput. Sci..

[11]  Ding-Zhu Du,et al.  On One-Way Functions and Polynomial-Time Isomorphisms , 1986, Theor. Comput. Sci..

[12]  Juris Hartmanis,et al.  On Isomorphisms and Density of NP and Other Complete Sets , 1977, SIAM J. Comput..

[13]  Deborah Joseph,et al.  Some Remarks on Witness Functions for Nonpolynomial and Noncomplete Sets in NP , 1985, Theor. Comput. Sci..

[14]  Stuart A. Kurtz,et al.  The isomorphism conjecture fails relative to a random oracle , 1995, JACM.