Achieving high-performance n-type PbTe via synergistically optimizing effective mass and carrier concentration and suppressing lattice thermal conductivity

[1]  D. Bhat,et al.  Improving ZT of SnTe by Electronic Structure Engineering: Unusual Behavior of Bi dopant in the Presence of Pb as a Co-dopant , 2021, Materials Advances.

[2]  M. Dargusch,et al.  Conducting polymer-based flexible thermoelectric materials and devices: From mechanisms to applications , 2021, Progress in Materials Science.

[3]  D. Bhat,et al.  Resonance levels in GeTe thermoelectrics: zinc as a new multifaceted dopant , 2020 .

[4]  J. Zou,et al.  Advanced Thermoelectric Design: From Materials and Structures to Devices. , 2020, Chemical reviews.

[5]  D. Bhat,et al.  Bi and Zn co-doped SnTe thermoelectrics: interplay of resonance levels and heavy hole band dominance leading to enhanced performance and a record high room temperature ZT , 2020 .

[6]  B. Ge,et al.  Cu Interstitials Enable Carriers and Dislocations for Thermoelectric Enhancements in n-PbTe0.75Se0.25 , 2020, Chem.

[7]  D. Bhat,et al.  Zn: a versatile resonant dopant for SnTe thermoelectrics , 2019 .

[8]  G. J. Snyder,et al.  Realization of higher thermoelectric performance by dynamic doping of copper in n-type PbTe , 2019, Energy & Environmental Science.

[9]  Yue Chen,et al.  Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity , 2018 .

[10]  Gang Chen,et al.  Advances in thermoelectrics , 2018 .

[11]  Haijun Wu,et al.  Remarkable Roles of Cu To Synergistically Optimize Phonon and Carrier Transport in n-Type PbTe-Cu2Te. , 2017, Journal of the American Chemical Society.

[12]  Di Wu,et al.  Extraordinary Thermoelectric Performance Realized in n‐Type PbTe through Multiphase Nanostructure Engineering , 2017, Advanced materials.

[13]  T. Mori Novel Principles and Nanostructuring Methods for Enhanced Thermoelectrics. , 2017, Small.

[14]  Terry M. Tritt,et al.  Advances in thermoelectric materials research: Looking back and moving forward , 2017, Science.

[15]  Di Wu,et al.  Large enhancement of thermoelectric properties in n-type PbTe via dual-site point defects , 2017 .

[16]  Tiejun Zhu,et al.  Compromise and Synergy in High‐Efficiency Thermoelectric Materials , 2017, Advanced materials.

[17]  M. Kanatzidis,et al.  Subtle Roles of Sb and S in Regulating the Thermoelectric Properties of N‐Type PbTe to High Performance , 2017 .

[18]  S. Suwas,et al.  Thermoelectric properties of In and I doped PbTe , 2016 .

[19]  Gangjian Tan,et al.  Rationally Designing High-Performance Bulk Thermoelectric Materials. , 2016, Chemical reviews.

[20]  Ctirad Uher,et al.  Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe , 2016, Nature Communications.

[21]  Y. Sung,et al.  Spinodally Decomposed PbSe-PbTe Nanoparticles for High-Performance Thermoelectrics: Enhanced Phonon Scattering and Unusual Transport Behavior. , 2016, ACS nano.

[22]  Gang Chen,et al.  High thermoelectric performance of n-type PbTe 1−y S y due to deep lying states induced by indium doping and spinodal decomposition , 2016 .

[23]  Qi Zhang,et al.  Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges   , 2016 .

[24]  M. Kanatzidis,et al.  Enhanced average thermoelectric figure of merit of n-type PbTe1−xIx–MgTe , 2015 .

[25]  M. Kanatzidis,et al.  Codoping in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence. , 2015, Journal of the American Chemical Society.

[26]  Gang Chen,et al.  Enhancement of thermoelectric performance in n-type PbTe 1−y Se y by doping Cr and tuning Te:Se ratio , 2015 .

[27]  Qian Zhang,et al.  Enhancement of Thermoelectric Performance of n‐Type PbSe by Cr Doping with Optimized Carrier Concentration , 2015 .

[28]  G. J. Snyder,et al.  Characterization of Lorenz number with Seebeck coefficient measurement , 2015 .

[29]  G. J. Snyder,et al.  Optimum Carrier Concentration in n‐Type PbTe Thermoelectrics , 2014 .

[30]  M. Kanatzidis,et al.  Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3 , 2014, Nature Communications.

[31]  K. Esfarjani,et al.  Resonant bonding leads to low lattice thermal conductivity , 2014, Nature Communications.

[32]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[33]  B. Paul,et al.  Exploration of Zn resonance levels and thermoelectric properties in I-doped PbTe with ZnTe nanostructures. , 2014, ACS applied materials & interfaces.

[34]  M. Kanatzidis,et al.  All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance , 2013 .

[35]  G. J. Snyder,et al.  Validity of rigid band approximation of PbTe thermoelectric materials , 2013 .

[36]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[37]  G. J. Snyder,et al.  High Thermoelectric Figure of Merit in PbTe Alloys Demonstrated in PbTe–CdTe , 2012 .

[38]  Junichiro Shiomi,et al.  Phonon conduction in PbSe, PbTe, and PbTe 1 − x Se x from first-principles calculations , 2012 .

[39]  Yue Wu,et al.  Molecular dynamics simulations of lattice thermal conductivity and spectral phonon mean free path of PbTe: Bulk and nanostructures , 2012 .

[40]  E. M. Levin,et al.  Chromium as resonant donor impurity in PbTe , 2012 .

[41]  Joseph P. Heremans,et al.  Resonant levels in bulk thermoelectric semiconductors , 2012 .

[42]  Heng Wang,et al.  Low effective mass leading to high thermoelectric performance , 2011 .

[43]  Gang Chen,et al.  Heat transport in silicon from first-principles calculations , 2011, 1107.5288.

[44]  G. J. Snyder,et al.  Reevaluation of PbTe1−xIx as high performance n-type thermoelectric material , 2011 .

[45]  G. J. Snyder,et al.  High thermoelectric figure of merit in heavy hole dominated PbTe , 2011 .

[46]  B. Paul,et al.  The effect of chromium impurity on the thermoelectric properties of PbTe in the temperature range 100–600 K , 2011 .

[47]  T. Proffen,et al.  Entropically Stabilized Local Dipole Formation in Lead Chalcogenides , 2010, Science.

[48]  M. Kanatzidis,et al.  Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit. , 2010, Journal of the American Chemical Society.

[49]  Eric S. Toberer,et al.  High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping , 2010 .

[50]  S. D. Mahanti,et al.  Electronic structure of Ga-, In-, and Tl-doped PbTe: A supercell study of the impurity bands , 2008 .

[51]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[52]  Donald T. Morelli,et al.  Thermopower Enhancement in PbTe with Pb Precipitates , 2005 .

[53]  C. Näther,et al.  Determination and redetermination of the crystal structures of chromium tellurides in the composition range CrTe1.56–CrTe1.67: Trigonal di-chromium tri-telluride Cr2Te3, monoclinic penta-chromium octa-telluride Cr5Te8, and the five layer superstructure of trigonal penta-chromium octa-telluride Cr5Te , 1997 .

[54]  H. Sitter,et al.  Structure of the second valence band in PbTe , 1977 .

[55]  Yu. I. Ravich,et al.  Scattering of Current Carriers and Transport Phenomena in Lead Chalcogenides , 1971 .

[56]  Joseph Callaway,et al.  Effect of Point Imperfections on Lattice Thermal Conductivity , 1960 .