Unsupervised Lesion Detection in Brain CT using Bayesian Convolutional Autoencoders
暂无分享,去创建一个
Konstantinos Kamnitsas | Ben Glocker | Daniel Rueckert | Steven McDonagh | Nick Pawlowski | Martin Rajchl | David K. Menon | Matthew C. H. Lee | Steven G. McDonagh | Enzo Ferrante | Tom Newman | Aneesh Khetani | Sam Cooke | Susan Stevenson | Frederick A. Zeiler | Richard John Digby | Jonathan P. Coles | Virginia Newcombe | D. Rueckert | Ben Glocker | K. Kamnitsas | Martin Rajchl | Enzo Ferrante | M. J. Lee | D. Menon | Nick Pawlowski | J. Coles | F. Zeiler | V. Newcombe | R. Digby | Susan Stevenson | Tom Newman | A. Khetani | Sam Cooke
[1] Brendt Wohlberg,et al. Detecting anomalous structures by convolutional sparse models , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).
[2] Ben Glocker,et al. Implicit Weight Uncertainty in Neural Networks. , 2017 .
[3] Ben Glocker,et al. DLTK: State of the Art Reference Implementations for Deep Learning on Medical Images , 2017, ArXiv.
[4] Koenraad Van Leemput,et al. Automated segmentation of multiple sclerosis lesions by model outlier detection , 2001, IEEE Transactions on Medical Imaging.
[5] Max Welling,et al. Auto-Encoding Variational Bayes , 2013, ICLR.
[6] Georg Langs,et al. Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery , 2017, IPMI.
[7] Bram van Ginneken,et al. A survey on deep learning in medical image analysis , 2017, Medical Image Anal..
[8] Max Welling,et al. Multiplicative Normalizing Flows for Variational Bayesian Neural Networks , 2017, ICML.
[9] Yoshua Bengio,et al. Generative Adversarial Nets , 2014, NIPS.
[10] Sungzoon Cho,et al. Variational Autoencoder based Anomaly Detection using Reconstruction Probability , 2015 .
[11] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[12] Nitish Srivastava,et al. Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..
[13] Zoubin Ghahramani,et al. Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference , 2015, ArXiv.