A microelectrode study of triiodide diffusion coefficients in mixtures of room temperature ionic liquids, useful for dye-sensitised solar cells

[1]  M. Watanabe,et al.  Anomaly of charge transport of an iodide/tri-iodide redox couple in an ionic liquid and its importance in dye-sensitized solar cells. , 2005, Chemical communications.

[2]  J. Heinze Elektrochemie mit Ultramikroelektroden , 1993 .

[3]  Andreas F. Meyer,et al.  Long‐term stability of dye‐sensitised solar cells , 2001 .

[4]  Z. Stojek New possibilities in Analytical Chemistry connected with voltammetric applications of microelectrodes , 1991 .

[5]  Maria Forsyth,et al.  Low viscosity ionic liquids based on organic salts of the dicyanamide anion , 2001 .

[6]  C. Gardner,et al.  Exchange current densities and other properties of reference electrodes based on the triiodide iodide and silver(I) ion-silver couples in organic solvents , 1982 .

[7]  K. Aoki,et al.  Determination of the number of electrons by chronoamperometry at small electrodes , 2005 .

[8]  H. Fernández,et al.  The use of ultramicroelectrodes for the determination of diffusion coefficients , 1994 .

[9]  C. Gardner,et al.  Teflon double-junction reference electrode for use in organic solvents , 1982 .

[10]  Koichi Aoki,et al.  Diffusion-controlled current at the stationary finite disk electrode: Theory , 1981 .

[11]  H. Gores,et al.  Comparison of electrochemical methods for triiodide diffusion coefficient measurements and observation of non-Stokesian diffusion behaviour in binary mixtures of two ionic liquids , 2006 .

[12]  K. B. Oldham,et al.  A comparison of the chronoamperometric response at inlaid and recessed disc microelectrodes , 1988 .

[13]  K. Izutsu Electrochemistry in Nonaqueous Solutions , 2002 .

[14]  R. Wightman,et al.  Diffusion coefficients determined with microelectrodes , 1991 .

[15]  A. Szabó,et al.  Chronoamperometric current at finite disk electrodes , 1982 .

[16]  Koichi Aoki,et al.  Formulation of the diffusion-controlled current at very small stationary disk electrodes , 1984 .

[17]  M. Kosmulski,et al.  Diffusion Coefficients of Ferrocene in Composite Materials Containing Ambient Temperature Ionic Liquids , 2000 .

[18]  P. O’Brien,et al.  STEADY-STATE VOLTAMMETRY WITH MICROELECTRODES : DETERMINATION OF HETEROGENEOUS CHARGE-TRANSFER RATE CONSTANTS FOR METALLOPORPHYRIN COMPLEXES , 1991 .

[19]  A. Bond,et al.  Practical considerations associated with voltammetric studies in room temperature ionic liquids. , 2005, The Analyst.

[20]  Hiroshi Matsui,et al.  High performance dye-sensitized solar cells using ionic liquids as their electrolytes , 2004 .

[21]  M. Baldo,et al.  A steady-state voltammetric procedure for the determination of hydrogen ions and total acid concentration in mixtures of a strong and a weak monoprotic acid , 2006 .

[22]  A. I. Popov,et al.  Chemistry of nonaqueous solutions , 1994 .

[23]  K. B. Oldham,et al.  How long does it take a microelectrode to reach a voltammetric steady state , 1990 .

[24]  H. Pettersson,et al.  The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications , 1996 .

[25]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[26]  D. Günzel,et al.  Ultramicroelectrodes for membrane research , 1997 .

[27]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[28]  Peng Wang,et al.  Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. , 2003, Journal of the American Chemical Society.

[29]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[30]  M. Watanabe,et al.  Equilibrium potentials and charge transport of an I-/I3- redox couple in an ionic liquid. , 2003, Chemical communications.

[31]  A. Doherty,et al.  Concentration-dependent diffusion in room temperature ionic liquids: a microelectrode study , 2004 .

[32]  A. Hinsch,et al.  Quasi-solid state polymer electrolytes for dye-sensitized solar cells: Effect of the electrolyte components variation on the triiodide ion diffusion properties and charge-transfer resistance at platinum electrode , 2006 .

[33]  Peng Wang,et al.  A Binary Ionic Liquid Electrolyte to Achieve ≥7% Power Conversion Efficiencies in Dye-Sensitized Solar Cells , 2004 .

[34]  K. Izutsu,et al.  Silver-Silver Cryptate(2,2) Ion Electrode as a Reference Electrode in Nonaqueous Solvents , 1985 .

[35]  J. Goldman,et al.  Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications , 1999 .

[36]  M. Sperl,et al.  Electroplating of Dysprosium, Electrochemical Investigations, and Study of Magnetic Properties , 2006 .

[37]  I. Silver Microelectrodes in medicine. , 1987, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[38]  Michael Grätzel,et al.  Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells , 2004 .

[39]  A. Dworkin,et al.  Broensted superacidity of hydrochloric acid in a liquid chloroaluminate. Aluminum chloride - 1-ethyl-3-methyl-1H-imidazolium chloride (55.O m/o AlCl3) , 1989 .

[40]  R. G. Evans,et al.  A comparative electrochemical study of diffusion in room temperature ionic liquid solvents versus acetonitrile. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[41]  C. Tobias,et al.  Electrochemistry of Iodide in Propylene Carbonate I . Cyclic Voltammetry Monitored by Optical Spectroscopy , 1987 .

[42]  R. G. Evans,et al.  Non-haloaluminate room-temperature ionic liquids in electrochemistry--a review. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.