Nanostructured activated carbons from natural precursors for electrical double layer capacitors

The development of energy-sustainable and energy-efficient economy depends on the ability to produce low-cost high-performance renewable materials for electrical energy storage devices. The electrical double layer capacitors (EDLCs) with nanostructured activated carbon (AC) electrodes from natural precursors have attracted considerable attention due to their great cycle stability, combined with moderate cost and attractive overall performance. Such ACs offer high specific surface area, high electrical conductivity, relatively low price, easy and environmental friendly production in large quantities. The recent developments in the synthesis of such AC materials allow for the greatly enhanced specific capacitance in a wide range of electrolytes. This review provides a summary of a recent research progress in synthesis and understanding the critical structure-property relationships for nanostructured ACs and highlights the trends for the future developments of ACs for EDLC applications.

[1]  G. Shi,et al.  Graphene based new energy materials , 2011 .

[2]  H. Oda,et al.  Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor , 2006 .

[3]  B. Fang,et al.  A modified activated carbon aerogel for high-energy storage in electric double layer capacitors , 2006 .

[4]  Hidetaka Konno,et al.  Carbon materials for electrochemical capacitors , 2010 .

[5]  D. Aurbach,et al.  Assessing optimal pore-to-ion size relations in the design of porous poly(vinylidene chloride) carbons for EDL capacitors , 2006 .

[6]  Alexander Kvit,et al.  Tailoring the pore alignment for rapid ion transport in microporous carbons. , 2010, Journal of the American Chemical Society.

[7]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[8]  Xianyou Wang,et al.  Preparation and performances of carbon aerogel microspheres for the application of supercapacitor , 2011 .

[9]  J. Singer,et al.  Titanium Carbide Derived Nanoporous Carbon for Energy-Related Applications , 2006 .

[10]  Hongda Du,et al.  The effect of pre-carbonization of mesophase pitch-based activated carbons on their electrochemical performance for electric double-layer capacitors , 2011 .

[11]  P. Taberna,et al.  Recent Advances in Understanding the Capacitive Storage in Microporous Carbons , 2010 .

[12]  E. Lust,et al.  Physical and electrochemical characteristics of supercapacitors based on carbide derived carbon electrodes in aqueous electrolytes , 2011 .

[13]  P. Ajayan,et al.  Ultrathin planar graphene supercapacitors. , 2011, Nano letters.

[14]  Yury Gogotsi,et al.  Effect of pore size and surface area of carbide derived carbons on specific capacitance , 2006 .

[15]  Patrice Simon,et al.  Possible improvements in making carbon electrodes for organic supercapacitors , 1999 .

[16]  D. Zhao,et al.  Carbon Materials for Chemical Capacitive Energy Storage , 2011, Advanced materials.

[17]  Dawei Liu,et al.  High performance high-purity sol-gel derived carbon supercapacitors from renewable sources , 2011 .

[18]  Hao Zhang,et al.  Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries , 2009 .

[19]  P. Taberna,et al.  High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte , 2007 .

[20]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[21]  E. Frąckowiak,et al.  Carbon materials modified by plasma treatment as electrodes for supercapacitors , 2010 .

[22]  E. Frąckowiak,et al.  Carbon nanotubes and their composites in electrochemical applications , 2011 .

[23]  Hao Zhang,et al.  Activated carbon with high capacitance prepared by NaOH activation for supercapacitors , 2010 .

[24]  Hang Shi,et al.  Activated carbons and double layer capacitance , 1996 .

[25]  Martin Pumera,et al.  Graphene-based nanomaterials for energy storage , 2011 .

[26]  V. Obreja,et al.  On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—A review , 2008 .

[27]  P. Taberna,et al.  Relation between the ion size and pore size for an electric double-layer capacitor. , 2008, Journal of the American Chemical Society.

[28]  E. Fiset,et al.  Double-layer capacitance of waste coffee ground activated carbons in an organic electrolyte , 2009 .

[29]  Zichen Wang,et al.  Performance of electrical double layer capacitors with porous carbons derived from rice husk , 2003 .

[30]  N. Pan,et al.  High power density supercapacitors using locally aligned carbon nanotube electrodes , 2005 .

[31]  Qingyu Li,et al.  Novel activated carbons as electrode materials for electrochemical capacitors from a series of starch , 2008 .

[32]  Mingming Chen,et al.  Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor , 2009 .

[33]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[34]  W. Shim,et al.  Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors , 2008 .

[35]  Yury Gogotsi,et al.  Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors , 2007 .

[36]  Sung-Woo Hwang,et al.  Capacitance control of carbon aerogel electrodes , 2004 .

[37]  G. Yushin,et al.  Electrical double layer capacitors with activated sucrose-derived carbon electrodes , 2011 .

[38]  M. Mastragostino,et al.  Dynamic Pulse Power and Energy of Ionic-Liquid-Based Supercapacitor for HEV Application , 2009 .

[39]  Jun Li,et al.  Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor , 2006 .

[40]  F. Béguin,et al.  Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors , 2007 .

[41]  K. Khosla,et al.  Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse , 2010 .

[42]  Alexander Kvit,et al.  High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. , 2010, ACS nano.

[43]  W. Henderson,et al.  Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte , 2005 .

[44]  François Béguin,et al.  Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes , 2006 .

[45]  G. Yushin,et al.  Effect of Carbon Particle Size on Electrochemical Performance of EDLC , 2008 .

[46]  K. K. Denshchikov,et al.  1-Methyl-3-butylimidazolium tetraflouroborate with activated carbon for electrochemical double layer supercapacitors , 2010 .

[47]  K. Takagi,et al.  Electrochemical properties of novel ionic liquids for electric double layer capacitor applications , 2004 .

[48]  G. Yushin,et al.  Electrical Double-Layer Capacitance of Zeolite-Templated Carbon in Organic Electrolyte , 2009 .

[49]  Antonio B. Fuertes,et al.  Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for High‐Performance Supercapacitor Electrodes , 2011 .

[50]  K. Hata,et al.  Impact of cell-voltage on energy and power performance of supercapacitors with single-walled carbon nanotube electrodes , 2010 .

[51]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[52]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[53]  Yaqin Huang,et al.  A fish scale based hierarchical lamellar porous carbon material obtained using a natural template for high performance electrochemical capacitors , 2010 .

[54]  Pierre-Louis Taberna,et al.  Modification of Al Current Collector/Active Material Interface for Power Improvement of Electrochemical Capacitor Electrodes , 2006 .

[55]  D. Aurbach,et al.  The electrochemistry of activated carbonaceous materials: past, present, and future , 2011 .

[56]  G. Paściak,et al.  Carbon aerogels as electrode material for electrical double layer supercapacitors—Synthesis and properties , 2010 .

[57]  F. Béguin,et al.  The Large Electrochemical Capacitance of Microporous Doped Carbon Obtained by Using a Zeolite Template , 2007 .

[58]  Bobby G. Sumpter,et al.  Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance. , 2010, ACS nano.

[59]  Xueliang Li,et al.  Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes , 2010 .

[60]  Stefan Kaskel,et al.  Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. , 2011, Small.

[61]  Deyang Qu,et al.  Studies of the activated carbons used in double-layer supercapacitors , 2002 .

[62]  Y. Kumar,et al.  Performance Studies of Activated Charcoal Based Electrical Double Layer Capacitors with Ionic Liquid Gel Polymer Electrolytes , 2010 .

[63]  Lu Wei,et al.  Electrical double layer capacitors with sucrose derived carbon electrodes in ionic liquid electrolytes , 2011 .

[64]  M. Oschatz,et al.  A cubic ordered, mesoporous carbide-derived carbon for gas and energy storage applications , 2010 .

[65]  Zhonghua Zhu,et al.  Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors , 2008 .

[66]  Lyubov G. Bulusheva,et al.  Double layer supercapacitor properties of onion‐like carbon materials , 2008 .

[67]  Y. Gogotsi,et al.  Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines. , 2006, Biomaterials.

[68]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[69]  Y. Gogotsi,et al.  Carbide-derived carbon membrane , 2008 .

[70]  B. Jang,et al.  Graphene-based supercapacitor with an ultrahigh energy density. , 2010, Nano letters.

[71]  M. Lázaro,et al.  Cherry stones as precursor of activated carbons for supercapacitors , 2009 .

[72]  Lili Zhang,et al.  Graphene-based materials as supercapacitor electrodes , 2010 .

[73]  Ki Chul Park,et al.  Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors , 2006 .

[74]  T. Kyotani,et al.  Investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using ordered microporous carbons as model materials. , 2009, Chemistry.

[75]  Lifeng Zhang,et al.  Flexible Nano‐felts of Carbide‐Derived Carbon with Ultra‐high Power Handling Capability , 2011 .

[76]  Dolores Lozano-Castelló,et al.  ROLE OF SURFACE CHEMISTRY ON ELECTRIC DOUBLE LAYER CAPACITANCE OF CARBON MATERIALS , 2005 .

[77]  Grzegorz Lota,et al.  Novel insight into neutral medium as electrolyte for high-voltage supercapacitors , 2012 .

[78]  D. Cooney Activated Charcoal: Antidotal and Other Medical Uses , 1980 .

[79]  G. Yushin,et al.  Carbide‐Derived Carbons: Effect of Pore Size on Hydrogen Uptake and Heat of Adsorption , 2006 .

[80]  John R. Miller,et al.  Graphene Double-Layer Capacitor with ac Line-Filtering Performance , 2010, Science.

[81]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[82]  B. Wei,et al.  Supercapacitors from Activated Carbon Derived from Banana Fibers , 2007 .

[83]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[84]  S. J. Kim,et al.  Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics , 2005 .

[85]  M. Yoshio,et al.  Improvement of Commercial Activated Carbon and Its Application in Electric Double Layer Capacitors , 2002 .

[86]  Liangti Qu,et al.  High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes , 2009 .

[87]  W. Shim,et al.  Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees , 2011 .

[88]  Hsisheng Teng,et al.  Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics , 2002 .

[89]  Pierre-Louis Taberna,et al.  Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications , 2004 .

[90]  F. Béguin,et al.  Capacitance Evolution of Electrochemical Capacitors with Tailored Nanoporous Electrodes in Pure and Dissolved Ionic Liquids , 2010 .

[91]  B. Conway,et al.  The role and utilization of pseudocapacitance for energy storage by supercapacitors , 1997 .

[92]  A. B. Fuertes,et al.  Polypyrrole‐Derived Activated Carbons for High‐Performance Electrical Double‐Layer Capacitors with Ionic Liquid Electrolyte , 2012 .

[93]  G. Yushin,et al.  Towards Ultrathick Battery Electrodes: Aligned Carbon Nanotube – Enabled Architecture , 2012, Advanced materials.

[94]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[95]  E. Frąckowiak,et al.  Erratum to “Electrochemical capacitors based on highly porous carbons prepared by KOH activation”: [Electrochim. Acta 49 (2004) 515–523] , 2004 .

[96]  Kevin G. Gallagher,et al.  The Role of Nanostructure in the Electrochemical Oxidation of Model-Carbon Materials in Acidic Environments , 2010 .

[97]  Chi-Chang Hu,et al.  Effects of electrolytes and electrochemical pretreatments on the capacitive characteristics of activated carbon fabrics for supercapacitors , 2004 .

[98]  G. Lu,et al.  Preparation of capacitor's electrode from sunflower seed shell. , 2011, Bioresource technology.

[99]  Jingsong Huang,et al.  A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. , 2008, Chemistry.

[100]  Doron Aurbach,et al.  Carbon Electrodes for Double‐Layer Capacitors I. Relations Between Ion and Pore Dimensions , 2000 .

[101]  D. Lozano‐Castelló,et al.  Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte , 2003 .

[102]  Gaoping Cao,et al.  What is the choice for supercapacitors: graphene or graphene oxide? , 2011 .

[103]  Anastasia Zabaniotou,et al.  Minimizing activated carbons production cost , 2009 .

[104]  Chi-Chang Hu,et al.  Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors , 2004 .

[105]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[106]  Keiichi Okajima,et al.  Capacitance behavior of activated carbon fibers with oxygen-plasma treatment , 2005 .

[107]  Pierre-Louis Taberna,et al.  Continuous carbide-derived carbon films with high volumetric capacitance , 2011 .

[108]  Jingsong Huang,et al.  Theoretical model for nanoporous carbon supercapacitors. , 2008, Angewandte Chemie.

[109]  E. Morallón,et al.  Chemical and electrochemical characterization of porous carbon materials , 2006 .