Decomposition of the generalized KP, cKP and mKP and their exact solutions
暂无分享,去创建一个
[1] Wenxiu Ma,et al. Complexiton solutions to integrable equations , 2005, nlin/0502035.
[2] J. Nimmo,et al. The use of Backlund transformations in obtaining N-soliton solutions in Wronskian form , 1984 .
[3] W. Ma. The algebraic structures of isospectral Lax operators and applications to integrable equations , 1992 .
[4] M. Wadati,et al. Relationships among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws , 1975 .
[5] Boris Konopelchenko,et al. Some new integrable nonlinear evolution equations in 2 + 1 dimensions , 1984 .
[6] V. Matveev,et al. Darboux Transformations and Solitons , 1992 .
[7] 広田 良吾,et al. The direct method in soliton theory , 2004 .
[8] J. Nimmo,et al. Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique , 1983 .
[9] Mark J. Ablowitz,et al. Solitons and the Inverse Scattering Transform , 1981 .
[10] I. Anders. Curved asymptotic solitons of Kadomtsev-Petviashvili-I and modified Kadomtsev-Petviashvili-I equations , 1995 .
[11] Jingsong He,et al. Partial differential equations possessing Frobenius integrable decompositions , 2007 .
[12] Wen-Xiu Ma,et al. An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems , 1994 .
[13] Hongyou Wu,et al. Time-space integrable decompositions of nonlinear evolution equations , 2006 .
[14] Wenxiu Ma. Wronskians, generalized Wronskians and solutions to the Korteweg–de Vries equation , 2003, nlin/0303068.
[15] J. Nimmo,et al. A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a wronskian , 1983 .
[16] J. Nimmo,et al. A bilinear Bäcklund transformation for the nonlinear Schrödinger equation , 1983 .
[17] Bilinear forms and Backlund transformations of the perturbation systems [rapid communication] , 2005 .
[18] Wenxiu Ma. Darboux Transformations for a Lax Integrable System in 2n Dimensions , 1996, solv-int/9605002.