Decomposition of the generalized KP, cKP and mKP and their exact solutions

Abstract The generalized ( 2 + 1 ) -dimensional KP, cKP and mKP are decomposed into the known ( 1 + 1 ) -dimensional soliton equations. Then, we show that the ( 1 + 1 ) -dimensional soliton equations give rise to the explicit soliton solutions of the generalized KP, cKP and mKP.

[1]  Wenxiu Ma,et al.  Complexiton solutions to integrable equations , 2005, nlin/0502035.

[2]  J. Nimmo,et al.  The use of Backlund transformations in obtaining N-soliton solutions in Wronskian form , 1984 .

[3]  W. Ma The algebraic structures of isospectral Lax operators and applications to integrable equations , 1992 .

[4]  M. Wadati,et al.  Relationships among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws , 1975 .

[5]  Boris Konopelchenko,et al.  Some new integrable nonlinear evolution equations in 2 + 1 dimensions , 1984 .

[6]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[7]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[8]  J. Nimmo,et al.  Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique , 1983 .

[9]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[10]  I. Anders Curved asymptotic solitons of Kadomtsev-Petviashvili-I and modified Kadomtsev-Petviashvili-I equations , 1995 .

[11]  Jingsong He,et al.  Partial differential equations possessing Frobenius integrable decompositions , 2007 .

[12]  Wen-Xiu Ma,et al.  An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems , 1994 .

[13]  Hongyou Wu,et al.  Time-space integrable decompositions of nonlinear evolution equations , 2006 .

[14]  Wenxiu Ma Wronskians, generalized Wronskians and solutions to the Korteweg–de Vries equation , 2003, nlin/0303068.

[15]  J. Nimmo,et al.  A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a wronskian , 1983 .

[16]  J. Nimmo,et al.  A bilinear Bäcklund transformation for the nonlinear Schrödinger equation , 1983 .

[17]  Bilinear forms and Backlund transformations of the perturbation systems [rapid communication] , 2005 .

[18]  Wenxiu Ma Darboux Transformations for a Lax Integrable System in 2n Dimensions , 1996, solv-int/9605002.