Formalizing the ring of Witt vectors
暂无分享,去创建一个
[1] Kevin Buzzard,et al. Formalising perfectoid spaces , 2019, CPP.
[2] Philip Wadler,et al. How to make ad-hoc polymorphism less ad hoc , 1989, POPL '89.
[3] Anthony Bordg. The Localization of a Commutative Ring , 2018, Arch. Formal Proofs.
[4] Jeremy Avigad,et al. A metaprogramming framework for formal verification , 2017, Proc. ACM Program. Lang..
[5] Vladimir Voevodsky,et al. A univalent formalization of the p-adic numbers , 2015, Mathematical Structures in Computer Science.
[6] E. Witt,et al. Zyklische Körper und Algebren der Charakteristik p vom Grad pn. Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassenkörper der Charakteristik p. , 1937 .
[7] Sebastian Ullrich,et al. Tabled Typeclass Resolution , 2020, ArXiv.
[8] Kazuhiko Sakaguchi,et al. Validating Mathematical Structures , 2020, IJCAR.
[9] H. Schmid. Zyklische algebraische Funktionenkörper vom Grade pn über endlichem Konstantenkörper der Charakteristik p. , 1936 .
[10] André Luiz Galdino,et al. Formalizing Ring Theory in PVS , 2018, ITP.
[11] Michiel Hazewinkel,et al. Witt vectors. Part 1 , 2008, 0804.3888.
[12] Enrico Tassi,et al. Canonical Structures for the Working Coq User , 2013, ITP.
[13] Robert Y. Lewis. A formal proof of Hensel's lemma over the p-adic integers , 2019, CPP.
[14] Tobias Nipkow,et al. A FORMAL PROOF OF THE KEPLER CONJECTURE , 2015, Forum of Mathematics, Pi.
[15] Adam Grabowski,et al. On algebraic hierarchies in mathematical repository of Mizar , 2016, 2016 Federated Conference on Computer Science and Information Systems (FedCSIS).
[16] Freek Wiedijk,et al. The QED Manifesto Revisited , 2007 .
[17] E. Witt,et al. Zyklische Körper und Algebren der Charakteristik p vom Grad p n , 1998 .
[18] Robert Y. Lewis,et al. Simplifying Casts and Coercions , 2020 .
[19] Bas Spitters,et al. Type classes for mathematics in type theory† , 2011, Mathematical Structures in Computer Science.
[20] Jeremy Avigad,et al. A Machine-Checked Proof of the Odd Order Theorem , 2013, ITP.
[21] Yasushige Watase. Rings of Fractions and Localization , 2020, Formaliz. Math..
[22] Artur Kornilowicz,et al. The First Isomorphism Theorem and Other Properties of Rings , 2014, Formaliz. Math..
[23] B. Poonen. THE METHOD OF CHABAUTY AND COLEMAN WILLIAM MCCALLUM AND , 2017 .
[24] Cyril Cohen,et al. Hierarchy Builder: Algebraic hierarchies Made Easy in Coq with Elpi (System Description) , 2020, FSCD.
[25] Vincent Siles,et al. Formalized linear algebra over Elementary Divisor Rings in Coq , 2016, Log. Methods Comput. Sci..
[26] The mathlib Community. The lean mathematical library , 2020, CPP.
[27] Johannes Hölzl,et al. Formalizing the Solution to the Cap Set Problem , 2019, ITP.
[28] Christer Lech,et al. A note on recurring series , 1953 .