Formalizing the ring of Witt vectors

The ring of Witt vectors W R over a base ring R is an important tool in algebraic number theory and lies at the foundations of modern p-adic Hodge theory. W R has the interesting property that it constructs a ring of characteristic 0 out of a ring of characteristic p > 1, and it can be used more specifically to construct from a finite field containing ℤ/pℤ the corresponding unramified field extension of the p-adic numbers ℚp (which is unique up to isomorphism). We formalize the notion of a Witt vector in the Lean proof assistant, along with the corresponding ring operations and other algebraic structure. We prove in Lean that, for prime p, the ring of Witt vectors over ℤ/pℤ is isomorphic to the ring of p-adic integers ℤp. In the process we develop idioms to cleanly handle calculations of identities between operations on the ring of Witt vectors. These calculations are intractable with a naive approach, and require a proof technique that is usually skimmed over in the informal literature. Our proofs resemble the informal arguments while being fully rigorous.

[1]  Kevin Buzzard,et al.  Formalising perfectoid spaces , 2019, CPP.

[2]  Philip Wadler,et al.  How to make ad-hoc polymorphism less ad hoc , 1989, POPL '89.

[3]  Anthony Bordg The Localization of a Commutative Ring , 2018, Arch. Formal Proofs.

[4]  Jeremy Avigad,et al.  A metaprogramming framework for formal verification , 2017, Proc. ACM Program. Lang..

[5]  Vladimir Voevodsky,et al.  A univalent formalization of the p-adic numbers , 2015, Mathematical Structures in Computer Science.

[6]  E. Witt,et al.  Zyklische Körper und Algebren der Charakteristik p vom Grad pn. Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassenkörper der Charakteristik p. , 1937 .

[7]  Sebastian Ullrich,et al.  Tabled Typeclass Resolution , 2020, ArXiv.

[8]  Kazuhiko Sakaguchi,et al.  Validating Mathematical Structures , 2020, IJCAR.

[9]  H. Schmid Zyklische algebraische Funktionenkörper vom Grade pn über endlichem Konstantenkörper der Charakteristik p. , 1936 .

[10]  André Luiz Galdino,et al.  Formalizing Ring Theory in PVS , 2018, ITP.

[11]  Michiel Hazewinkel,et al.  Witt vectors. Part 1 , 2008, 0804.3888.

[12]  Enrico Tassi,et al.  Canonical Structures for the Working Coq User , 2013, ITP.

[13]  Robert Y. Lewis A formal proof of Hensel's lemma over the p-adic integers , 2019, CPP.

[14]  Tobias Nipkow,et al.  A FORMAL PROOF OF THE KEPLER CONJECTURE , 2015, Forum of Mathematics, Pi.

[15]  Adam Grabowski,et al.  On algebraic hierarchies in mathematical repository of Mizar , 2016, 2016 Federated Conference on Computer Science and Information Systems (FedCSIS).

[16]  Freek Wiedijk,et al.  The QED Manifesto Revisited , 2007 .

[17]  E. Witt,et al.  Zyklische Körper und Algebren der Charakteristik p vom Grad p n , 1998 .

[18]  Robert Y. Lewis,et al.  Simplifying Casts and Coercions , 2020 .

[19]  Bas Spitters,et al.  Type classes for mathematics in type theory† , 2011, Mathematical Structures in Computer Science.

[20]  Jeremy Avigad,et al.  A Machine-Checked Proof of the Odd Order Theorem , 2013, ITP.

[21]  Yasushige Watase Rings of Fractions and Localization , 2020, Formaliz. Math..

[22]  Artur Kornilowicz,et al.  The First Isomorphism Theorem and Other Properties of Rings , 2014, Formaliz. Math..

[23]  B. Poonen THE METHOD OF CHABAUTY AND COLEMAN WILLIAM MCCALLUM AND , 2017 .

[24]  Cyril Cohen,et al.  Hierarchy Builder: Algebraic hierarchies Made Easy in Coq with Elpi (System Description) , 2020, FSCD.

[25]  Vincent Siles,et al.  Formalized linear algebra over Elementary Divisor Rings in Coq , 2016, Log. Methods Comput. Sci..

[26]  The mathlib Community The lean mathematical library , 2020, CPP.

[27]  Johannes Hölzl,et al.  Formalizing the Solution to the Cap Set Problem , 2019, ITP.

[28]  Christer Lech,et al.  A note on recurring series , 1953 .