Analysis of fully discrete, quasi non-conforming approximations of evolution equations and applications

In this paper, we consider fully discrete approximations of abstract evolution equations, by means of a quasi non-conforming spatial approximation and finite differences in time (Rothe–Galerkin method). The main result is the convergence of the discrete solutions to a weak solution of the continuous problem. Hence, the result can be interpreted either as a justification of the numerical method or as an alternative way of constructing weak solutions. We set the problem in the very general and abstract setting of pseudo-monotone operators, which allows for a unified treatment of several evolution problems. The examples — which fit into our setting and which motivated our research — are problems describing the motion of incompressible fluids, since the quasi non-conforming approximation allows to handle problems with prescribed divergence. Our abstract results for pseudo-monotone operators allow to show convergence just by verifying a few natural assumptions on the operator time-by-time and on the discretization spaces. Hence, applications and extensions to several other evolution problems can be easily performed. The results of some numerical experiments are reported in the final section.

[1]  Existence of weak solutions for unsteady motions of micro-polar electrorheological fluids , 2015 .

[2]  R. Temam Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .

[3]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[4]  L. R. Scott,et al.  A quasi-local interpolation operator¶preserving the discrete divergence , 2003 .

[5]  Tabea Tscherpel Finite element approximation for the unsteady flow of implicitly constituted incompressible fluids , 2018 .

[6]  L. Berselli,et al.  Turbulent flows as generalized Kelvin–Voigt materials: Modeling and analysis , 2019, Nonlinear Analysis.

[7]  Bartlomiej Dyda,et al.  Muckenhoupt Ap-properties of Distance Functions and Applications to Hardy–Sobolev -type Inequalities , 2017, 1705.01360.

[8]  CARSTEN EBMEYER,et al.  Optimal Convergence for the Implicit Space-Time Discretization of Parabolic Systems with p-Structure , 2007, SIAM J. Numer. Anal..

[9]  Lars Diening,et al.  On the Finite Element Approximation of p-Stokes Systems , 2012, SIAM J. Numer. Anal..

[10]  Andreas Prohl,et al.  Convergence Analysis for Incompressible Generalized Newtonian Fluid Flows with Nonstandard Anisotropic Growth Conditions , 2010, SIAM J. Numer. Anal..

[11]  Prince Romeo Mensah,et al.  Space-time approximation of parabolic systems with variable growth , 2018, IMA Journal of Numerical Analysis.

[12]  Stephan Luckhaus,et al.  Quasilinear elliptic-parabolic differential equations , 1983 .

[13]  John W. Barrett,et al.  Finite element approximation of the parabolic p -Laplacian , 1994 .

[14]  L. Berselli,et al.  Optimal error estimate for semi-implicit space-time discretization for the equations describing incompressible generalized Newtonian fluids , 2013, 1307.7578.

[15]  Abner J. Salgado,et al.  Stability of the Stokes projection on weighted spaces and applications , 2019, Math. Comput..

[16]  Michael Ruzicka,et al.  On the Full Space-Time Discretization of the Generalized Stokes Equations: The Dirichlet Case , 2016, SIAM J. Numer. Anal..

[17]  R. Nochetto,et al.  The micropolar Navier-Stokes equations: A priori error analysis , 2013, 1303.7005.

[18]  M. Růžička,et al.  Modeling micropolar electrorheological fluids , 2006 .

[19]  Michael Ruzicka,et al.  Convergence of Fully Discrete Implicit and Semi-implicit Approximations of Singular Parabolic Equations , 2019, SIAM J. Numer. Anal..

[20]  Ricardo H. Nochetto,et al.  Max-norm estimates for Stokes and Navier–Stokes approximations in convex polyhedra , 2015, Numerische Mathematik.

[21]  Bohumír Opic,et al.  How to define reasonably weighted Sobolev spaces , 1984 .

[22]  G. Ukaszewicz,et al.  Long time behavior of 2D micropolar fluid flows , 2001 .

[23]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[24]  Ricardo H. Nochetto,et al.  Unconditional Stability of Semi-Implicit Discretizations of Singular Flows , 2017, SIAM J. Numer. Anal..

[25]  Andreas Prohl,et al.  Rate of convergence of regularization procedures and finite element approximations for the total variation flow , 2005, Numerische Mathematik.

[26]  Lars Diening,et al.  A decomposition technique for John domains , 2010 .

[27]  L. R. Scott A Local Fortin Operator for Low-order Taylor–Hood Elements , 2021 .

[28]  L. Berselli,et al.  Space–time discretization for nonlinear parabolic systems with p-structure , 2020, IMA Journal of Numerical Analysis.

[29]  Ricardo H. Nochetto,et al.  Discrete Total Variation Flows without Regularization , 2012, SIAM J. Numer. Anal..

[30]  Vivette Girault,et al.  Two-grid finite-element schemes for the transient Navier-Stokes problem , 2001 .

[31]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[32]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[33]  Giuseppe Savare',et al.  A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations † , 2000 .

[34]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[35]  A. Prohl Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system , 2008 .

[36]  S. S. Ravindran,et al.  Analysis of a Decoupled Time-Stepping Scheme for Evolutionary Micropolar Fluid Flows , 2016, Adv. Numer. Anal..

[37]  Anders Logg,et al.  DOLFIN: Automated finite element computing , 2010, TOMS.

[38]  J. Rulla,et al.  Error analysis for implicit approximations to solutions to Cauchy problems , 1996 .

[39]  A. Kaltenbach,et al.  Note on the existence theory for pseudo-monotone evolution problems , 2019, Journal of Evolution Equations.

[40]  T. Roubíček Nonlinear partial differential equations with applications , 2005 .

[41]  Lars Diening,et al.  Fortin Operator for the Taylor-Hood Element , 2021, Numerische Mathematik.

[42]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[43]  Ricardo H. Nochetto,et al.  Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications , 2014, Numerische Mathematik.

[44]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[45]  E. Suli,et al.  Fully discrete finite element approximation of unsteady flows of implicitly constituted incompressible fluids , 2018, IMA Journal of Numerical Analysis.

[46]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[47]  A. Fröhlich Stokes- und Navier-Stokes-Gleichungen in gewichteten Funktionenräumen , 2001 .