Analysis of fully discrete, quasi non-conforming approximations of evolution equations and applications
暂无分享,去创建一个
[1] Existence of weak solutions for unsteady motions of micro-polar electrorheological fluids , 2015 .
[2] R. Temam. Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .
[3] E. Zeidler. Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .
[4] L. R. Scott,et al. A quasi-local interpolation operator¶preserving the discrete divergence , 2003 .
[5] Tabea Tscherpel. Finite element approximation for the unsteady flow of implicitly constituted incompressible fluids , 2018 .
[6] L. Berselli,et al. Turbulent flows as generalized Kelvin–Voigt materials: Modeling and analysis , 2019, Nonlinear Analysis.
[7] Bartlomiej Dyda,et al. Muckenhoupt Ap-properties of Distance Functions and Applications to Hardy–Sobolev -type Inequalities , 2017, 1705.01360.
[8] CARSTEN EBMEYER,et al. Optimal Convergence for the Implicit Space-Time Discretization of Parabolic Systems with p-Structure , 2007, SIAM J. Numer. Anal..
[9] Lars Diening,et al. On the Finite Element Approximation of p-Stokes Systems , 2012, SIAM J. Numer. Anal..
[10] Andreas Prohl,et al. Convergence Analysis for Incompressible Generalized Newtonian Fluid Flows with Nonstandard Anisotropic Growth Conditions , 2010, SIAM J. Numer. Anal..
[11] Prince Romeo Mensah,et al. Space-time approximation of parabolic systems with variable growth , 2018, IMA Journal of Numerical Analysis.
[12] Stephan Luckhaus,et al. Quasilinear elliptic-parabolic differential equations , 1983 .
[13] John W. Barrett,et al. Finite element approximation of the parabolic p -Laplacian , 1994 .
[14] L. Berselli,et al. Optimal error estimate for semi-implicit space-time discretization for the equations describing incompressible generalized Newtonian fluids , 2013, 1307.7578.
[15] Abner J. Salgado,et al. Stability of the Stokes projection on weighted spaces and applications , 2019, Math. Comput..
[16] Michael Ruzicka,et al. On the Full Space-Time Discretization of the Generalized Stokes Equations: The Dirichlet Case , 2016, SIAM J. Numer. Anal..
[17] R. Nochetto,et al. The micropolar Navier-Stokes equations: A priori error analysis , 2013, 1303.7005.
[18] M. Růžička,et al. Modeling micropolar electrorheological fluids , 2006 .
[19] Michael Ruzicka,et al. Convergence of Fully Discrete Implicit and Semi-implicit Approximations of Singular Parabolic Equations , 2019, SIAM J. Numer. Anal..
[20] Ricardo H. Nochetto,et al. Max-norm estimates for Stokes and Navier–Stokes approximations in convex polyhedra , 2015, Numerische Mathematik.
[21] Bohumír Opic,et al. How to define reasonably weighted Sobolev spaces , 1984 .
[22] G. Ukaszewicz,et al. Long time behavior of 2D micropolar fluid flows , 2001 .
[23] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[24] Ricardo H. Nochetto,et al. Unconditional Stability of Semi-Implicit Discretizations of Singular Flows , 2017, SIAM J. Numer. Anal..
[25] Andreas Prohl,et al. Rate of convergence of regularization procedures and finite element approximations for the total variation flow , 2005, Numerische Mathematik.
[26] Lars Diening,et al. A decomposition technique for John domains , 2010 .
[27] L. R. Scott. A Local Fortin Operator for Low-order Taylor–Hood Elements , 2021 .
[28] L. Berselli,et al. Space–time discretization for nonlinear parabolic systems with p-structure , 2020, IMA Journal of Numerical Analysis.
[29] Ricardo H. Nochetto,et al. Discrete Total Variation Flows without Regularization , 2012, SIAM J. Numer. Anal..
[30] Vivette Girault,et al. Two-grid finite-element schemes for the transient Navier-Stokes problem , 2001 .
[31] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[32] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[33] Giuseppe Savare',et al. A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations † , 2000 .
[34] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[35] A. Prohl. Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system , 2008 .
[36] S. S. Ravindran,et al. Analysis of a Decoupled Time-Stepping Scheme for Evolutionary Micropolar Fluid Flows , 2016, Adv. Numer. Anal..
[37] Anders Logg,et al. DOLFIN: Automated finite element computing , 2010, TOMS.
[38] J. Rulla,et al. Error analysis for implicit approximations to solutions to Cauchy problems , 1996 .
[39] A. Kaltenbach,et al. Note on the existence theory for pseudo-monotone evolution problems , 2019, Journal of Evolution Equations.
[40] T. Roubíček. Nonlinear partial differential equations with applications , 2005 .
[41] Lars Diening,et al. Fortin Operator for the Taylor-Hood Element , 2021, Numerische Mathematik.
[42] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[43] Ricardo H. Nochetto,et al. Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications , 2014, Numerische Mathematik.
[44] R. Showalter. Monotone operators in Banach space and nonlinear partial differential equations , 1996 .
[45] E. Suli,et al. Fully discrete finite element approximation of unsteady flows of implicitly constituted incompressible fluids , 2018, IMA Journal of Numerical Analysis.
[46] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[47] A. Fröhlich. Stokes- und Navier-Stokes-Gleichungen in gewichteten Funktionenräumen , 2001 .