Self-limiting layer-by-layer oxidation of atomically thin WSe2.

Growth of a uniform oxide film with a tunable thickness on two-dimensional transition metal dichalcogenides is of great importance for electronic and optoelectronic applications. Here we demonstrate homogeneous surface oxidation of atomically thin WSe2 with a self-limiting thickness from single- to trilayers. Exposure to ozone (O3) below 100 °C leads to the lateral growth of tungsten oxide selectively along selenium zigzag-edge orientations on WSe2. With further O3 exposure, the oxide regions coalesce and oxidation terminates leaving a uniform thickness oxide film on top of unoxidized WSe2. At higher temperatures, oxidation evolves in the layer-by-layer regime up to trilayers. The oxide films formed on WSe2 are nearly atomically flat. Using photoluminescence and Raman spectroscopy, we find that the underlying single-layer WSe2 is decoupled from the top oxide but hole-doped. Our findings offer a new strategy for creating atomically thin heterostructures of semiconductors and insulating oxides with potential for applications in electronic devices.

[1]  Ch. Cardinaud,et al.  Etching processes of tungsten in SF6‐O2 radio‐frequency plasmas , 1991 .

[2]  Kunio Suzuki,et al.  Reactivity of molybdenum disulfide surfaces studied by XPS , 1981 .

[3]  Christian Kloc,et al.  Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. , 2013, Nanoscale.

[4]  Ning Lu,et al.  HfO(2) on MoS(2) by atomic layer deposition: adsorption mechanisms and thickness scalability. , 2013, ACS nano.

[5]  J. Tour,et al.  Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air , 2013, Nano Research.

[6]  W. Jaegermann,et al.  Reactivity of layer type transition metal chalcogenides towards oxidation , 1986 .

[7]  T. Einstein,et al.  Anisotropic Etching of Atomically Thin MoS2 , 2013 .

[8]  D. Smirnov,et al.  New First Order Raman-active Modes in Few Layered Transition Metal Dichalcogenides , 2014, Scientific Reports.

[9]  H. Wen,et al.  Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. , 2013, Nano letters.

[10]  P. Leiderer,et al.  Nanostructuring on WSe2 with the atomic force microscope by a potential controlled electrochemical reaction , 1996 .

[11]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[12]  F. Himpsel,et al.  The oxidation of GaAs(110): A reevaluation , 1984 .

[13]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[14]  C. Battaglia,et al.  Hole contacts on transition metal dichalcogenides: interface chemistry and band alignments. , 2014, ACS nano.

[15]  Yi-sheng Liu,et al.  Air stable p-doping of WSe2 by covalent functionalization. , 2014, ACS nano.

[16]  S. Khondaker,et al.  Photoluminescence Quenching in Single-layer MoS2 via Oxygen Plasma Treatment , 2014, 1405.0646.

[17]  Michael S. Fuhrer,et al.  Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides , 2007 .

[18]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[19]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[20]  R. D. Schnell,et al.  Surface oxidation states of germanium , 1986 .

[21]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[22]  D. Waldeck,et al.  The WSe2/Tungsten-Oxide Interface: Structure and Photoluminescence , 1993 .

[23]  Yuhei Miyauchi,et al.  Tunable photoluminescence of monolayer MoS₂ via chemical doping. , 2013, Nano letters.

[24]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[25]  Wang Yao,et al.  Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides , 2012, Scientific Reports.

[26]  M. Strano,et al.  Synthesis of Atomically Thin WO3 Sheets from Hydrated Tungsten Trioxide , 2010 .

[27]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[28]  C. Kloc,et al.  Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2 , 2013 .

[29]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[30]  J. Grossman,et al.  Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. , 2013, Nano letters.

[31]  G. T. Pott,et al.  X-ray photoelectron spectroscopy study of supported tungsten oxide , 1973 .

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  Jing Kong,et al.  Dielectric screening of excitons and trions in single-layer MoS2. , 2014, Nano letters.

[34]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature Nanotechnology.

[35]  R. Tenne,et al.  Highly Oriented WSe2 Thin-Films Prepared by Selenization of Evaporated WO3 , 1994 .

[36]  R. Colton,et al.  Electrochromism in some thin‐film transition‐metal oxides characterized by x‐ray electron spectroscopy , 1978 .

[37]  Andres Castellanos-Gomez,et al.  The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2 , 2013, Nano Research.

[38]  Nils Scheuschner,et al.  Photoluminescence of freestanding single- and few-layerMoS2 , 2013, 1311.5824.

[39]  Ming-Ta Hsieh,et al.  Highly power efficient organic light-emitting diodes with a p-doping layer , 2006 .

[40]  S. Ross,et al.  Surface Oxidation of Molybdenum Disulfide , 1955 .

[41]  Feng Ding,et al.  Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe₂ , TaS₂ , and TaSe₂. , 2013, Small.

[42]  Hua Zhang,et al.  Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. , 2013, ACS nano.

[43]  R. Lieth Preparation and Crystal Growth of Materials with Layered Structures , 1977 .

[44]  B. Parkinson,et al.  Demonstration of the surface stability of the Van Der Waals surface (0001) of MoSe2 by LEED and electrochemistry , 1984 .

[45]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[46]  Ali Javey,et al.  MoS₂ P-type transistors and diodes enabled by high work function MoOx contacts. , 2014, Nano letters.

[47]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[48]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[49]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[50]  C. Battaglia,et al.  Strain-induced indirect to direct bandgap transition in multilayer WSe2. , 2014, Nano letters.

[51]  C. Wagner,et al.  Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis , 1980 .

[52]  O. Kolosov,et al.  Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates , 2013, Scientific Reports.

[53]  Kevin M. Chen,et al.  Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density , 2014 .

[54]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[55]  A. S. Grove,et al.  General Relationship for the Thermal Oxidation of Silicon , 1965 .

[56]  Hasan Sahin,et al.  Monolayers of MoS2 as an oxidation protective nanocoating material , 2014 .

[57]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[58]  Janna Börner,et al.  Real-time imaging of methane gas leaks using a single-pixel camera. , 2017, Optics express.

[59]  D. Weiss,et al.  Low‐temperature photoluminescence of oxide‐covered single‐layer MoS2 , 2011, 1112.3747.