Solution‐processable organic semiconductors for thin‐film transistors: Opportunities for chemical engineers

[1]  Shaochen Chen,et al.  Large-area patterning of a solution-processable organic semiconductor to reduce parasitic leakage and off currents in thin-film transistors , 2007 .

[2]  Henrik Stubb,et al.  Field-effect conduction in polyalkylthiophenes , 1991 .

[3]  A. Jen,et al.  Solvent-dependent assembly of terphenyl- and quaterphenyldithiol on gold and gallium arsenide. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[4]  Zhen‐Gang Wang Challenges and opportunities in polymer theory , 2006 .

[5]  Maxim Shkunov,et al.  Liquid-crystalline semiconducting polymers with high charge-carrier mobility , 2006, Nature materials.

[6]  Zhenan Bao,et al.  New Air-Stable n-Channel Organic Thin Film Transistors , 1998 .

[7]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[8]  C. Dimitrakopoulos,et al.  Photosensitive Pentacene Precursor: Synthesis, Photothermal Patterning, and Application in Thin‐Film Transistors , 2003 .

[9]  Tobin J Marks,et al.  Organic thin-film transistors based on carbonyl-functionalized quaterthiophenes: high mobility N-channel semiconductors and ambipolar transport. , 2005, Journal of the American Chemical Society.

[10]  John E Anthony,et al.  Functionalized acenes and heteroacenes for organic electronics. , 2006, Chemical reviews.

[11]  A. Jen,et al.  High-sensitivity transmission IR spectroscopy for the chemical identification and structural analysis of conjugated molecules on gallium arsenide surfaces. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[12]  S. Jenekhe,et al.  Ambipolar Charge Transport in Air‐Stable Polymer Blend Thin‐Film Transistors , 2004 .

[13]  T. Shimoda,et al.  Control of carrier density by self-assembled monolayers in organic field-effect transistors , 2004, Nature materials.

[14]  H. Katz Recent Advances in Semiconductor Performance and Printing Processes for Organic Transistor-Based Electronics , 2004 .

[15]  A. Dodabalapur,et al.  A soluble and air-stable organic semiconductor with high electron mobility , 2000, Nature.

[16]  John E. Anthony,et al.  Improving Organic Thin‐Film Transistor Performance through Solvent‐Vapor Annealing of Solution‐Processable Triethylsilylethynyl Anthradithiophene , 2006 .

[17]  J. P. Calbert,et al.  Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Ali Afzali,et al.  High-performance, solution-processed organic thin film transistors from a novel pentacene precursor. , 2002, Journal of the American Chemical Society.

[19]  Ute Zschieschang,et al.  High-mobility polymer gate dielectric pentacene thin film transistors , 2002 .

[20]  N. Ono,et al.  Solution-processible organic semiconductor for transistor applications: Tetrabenzoporphyrin , 2004 .

[21]  Tracy L. Bucholz,et al.  Improving the electrical conductivity of polymer acid-doped polyaniline by controlling the template molecular weight , 2007 .

[22]  Thomas N Jackson,et al.  Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/V x s. , 2005, Journal of the American Chemical Society.

[23]  M. Shkunov,et al.  Alkylidene fluorene liquid crystalline semiconducting polymers for organic field effect transistor devices , 2004 .

[24]  T. Jackson,et al.  High mobility solution-processed OTFTs , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[25]  Feng Gao,et al.  Direct patterning of conductive water-soluble polyaniline for thin-film organic electronics , 2005 .

[26]  L. Drummy,et al.  Thickness‐Driven Orthorhombic to Triclinic Phase Transformation in Pentacene Thin Films , 2005 .

[27]  John A Rogers,et al.  Interfacial chemistries for nanoscale transfer printing. , 2002, Journal of the American Chemical Society.

[28]  Klaus Müllen,et al.  A Soluble Pentacene Precursor: Synthesis, Solid‐State Conversion into Pentacene and Application in a Field‐Effect Transistor , 1999 .

[29]  Zhenan Bao,et al.  Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility , 1996 .

[30]  Alberto Salleo,et al.  Lamination method for the study of interfaces in polymeric thin film transistors. , 2004, Journal of the American Chemical Society.

[31]  Magnus Willander,et al.  Field‐effect mobility of poly(3‐hexylthiophene) , 1988 .

[32]  John A Rogers,et al.  Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Richard D. McCullough,et al.  THE CHEMISTRY OF CONDUCTING POLYTHIOPHENES , 1998 .

[34]  V. Subramanian,et al.  Direct Correlation of Organic Semiconductor Film Structure to Field‐Effect Mobility , 2005 .

[35]  Matthew J. Panzer,et al.  High charge carrier densities and conductance maxima in single-crystal organic field-effect transistors with a polymer electrolyte gate dielectric , 2006 .

[36]  P. Blom,et al.  Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics , 2005, Nature materials.

[37]  René A. J. Janssen,et al.  Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold , 2006, Nature materials.