A Video Recommendation Algorithm Based on Hyperlink-Graph Model

Thetraditionalgraph-basedpersonalrecommendationalgorithmsmainlydependtheuser-itemmodel toconstructabipartitegraph.However,thetraditionalalgorithmshavelowefficiency,becausethe matrixofthealgorithmsissparseanditcostlotsoftimetocomputethesimilaritybetweenusers or items.Therefore, thispaperproposesanimprovedvideorecommendationalgorithmbasedon hyperlink-graph model. This method cannot only improve the accuracy of the recommendation algorithms,butalsoreducetherunningtime.Furthermore, theInternetusersmayhavedifferent interests,forexample,auserinterestinwatchingnewsvideos,andatthesametimeheorshealso enjoywatchingeconomicandsportsvideos.Thispaperproposesacomplementalgorithmbased on hyperlink-graph for video recommendations. This algorithm improves the accuracy of video recommendationsbycrossclusteringinuserlayers. KeywoRdS Bipartite Graph, Cross Clustering, Hyperlink-Graph, Video Recommendation

[1]  Jiangchuan Liu,et al.  Statistics and Social Network of YouTube Videos , 2008, 2008 16th Interntional Workshop on Quality of Service.

[2]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[3]  Philip S. Yu,et al.  Horting hatches an egg: a new graph-theoretic approach to collaborative filtering , 1999, KDD '99.

[4]  Yi-Cheng Zhang,et al.  Bipartite network projection and personal recommendation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Bo Xiao,et al.  An optimized item-based collaborative filtering recommendation algorithm , 2009, 2009 IEEE International Conference on Network Infrastructure and Digital Content.

[6]  María N. Moreno García,et al.  A hybrid recommendation approach for a tourism system , 2013, Expert Syst. Appl..

[7]  Nicola Henze,et al.  Exploiting Additional Context for Graph-Based Tag Recommendations in Folksonomy Systems , 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[8]  Taghi M. Khoshgoftaar,et al.  A Survey of Collaborative Filtering Techniques , 2009, Adv. Artif. Intell..

[9]  Ronen Feldman,et al.  Book Reviews: The Text Mining Handbook: Advanced Approaches to Analyzing Unstructured Data by Ronen Feldman and James Sanger , 2008, CL.

[10]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[11]  Xin Su,et al.  Social network-based recommendation: a graph random walk kernel approach , 2012, JCDL '12.

[12]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[13]  Olfa Nasraoui,et al.  Efficient Hybrid Web Recommendations Based on Markov Clickstream Models and Implicit Search , 2007, Web Intelligence.

[14]  Zhang Shao-Zhong,et al.  Hybrid Graph Model with Two Layers for Personalized Recommendation , 2009 .

[15]  Yi-Cheng Zhang,et al.  Effect of initial configuration on network-based recommendation , 2007, 0711.2506.

[16]  Sanjeev R. Kulkarni,et al.  A randomwalk based model incorporating social information for recommendations , 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing.

[17]  François Fouss,et al.  Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation , 2007, IEEE Transactions on Knowledge and Data Engineering.

[18]  Pasquale Lops,et al.  Content-based Recommender Systems: State of the Art and Trends , 2011, Recommender Systems Handbook.