The Identification of a Dusty Multiarm Spiral Galaxy at z = 3.06 with JWST and ALMA

Spiral arms serve crucial purposes in star formation and galaxy evolution. In this paper, we report the identification of “A2744-DSG-z3,” a dusty, multiarm spiral galaxy at z = 3.059 using the James Webb Space Telescope (JWST) NIRISS imaging and grism spectroscopy. A2744-DSG-z3 was discovered as a gravitationally lensed submillimeter galaxy with the Atacama Large Millimeter/submillimeter Array (ALMA). This is the most distant stellar spiral structure seen thus far, consistent with cosmological simulations that suggest z ≈ 3 as the epoch when spirals emerge. Thanks to the gravitational lensing and excellent spatial resolution of JWST, the spiral arms are resolved with a spatial resolution of ≈290 pc. Based on spectral energy distribution fitting, the spiral galaxy has a delensed star formation rate of 85 ± 30 M ⊙ yr−1, and a stellar mass of ≈1010.6 M ⊙, indicating that A2744-DSG-z3 is a main-sequence galaxy. After fitting the spiral arms, we find a stellar effective radius (R e,star) of 5.0 ± 1.5 kpc. Combining with ALMA measurements, we find that the effective radii ratio between dust and stars is ≈0.4, similar to those of massive star‐forming galaxies (SFGs) at z ∼ 2, indicating a compact dusty core in A2744-DSG-z3. Moreover, this galaxy appears to be living in a group environment: including A2744-DSG-z3, at least three galaxies at z = 3.05–3.06 are spectroscopically confirmed by JWST/NIRISS and ALMA, residing within a lensing-corrected projected scale of ≈70 kpc. This, along with the asymmetric brightness profile, further suggests that the spiral arms may be triggered by minor-merger events at z ≳ 3.

[1]  I. Smail,et al.  JWST Sneaks a Peek at the Stellar Morphology of z ∼ 2 Submillimeter Galaxies: Bulge Formation at Cosmic Noon , 2022, The Astrophysical Journal Letters.

[2]  A. Fontana,et al.  The GLASS-JWST Early Release Science Program. I. Survey Design and Release Plans , 2022, The Astrophysical Journal.

[3]  Y. Fudamoto,et al.  Red Spiral Galaxies at Cosmic Noon Unveiled in the First JWST Image , 2022, The Astrophysical Journal Letters.

[4]  A. Fontana,et al.  Early Results from GLASS-JWST. VI. Extreme Rest-optical Equivalent Widths Detected in NIRISS Wide Field Slitless Spectroscopy , 2022, The Astrophysical Journal Letters.

[5]  A. Fontana,et al.  Early Results from GLASS-JWST. IV. Spatially Resolved Metallicity in a Low-mass z ∼ 3 Galaxy with NIRISS , 2022, The Astrophysical Journal Letters.

[6]  Miguel de Val-Borro,et al.  The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.

[7]  P. P. van der Werf,et al.  ALMA Lensing Cluster Survey: ALMA-Herschel Joint Study of Lensed Dusty Star-forming Galaxies across z ≃ 0.5 – 6 , 2022, The Astrophysical Journal.

[8]  Xiaohui Fan,et al.  First Census of Gas-phase Metallicity Gradients of Star-forming Galaxies in Overdense Environments at Cosmic Noon , 2022, The Astrophysical Journal Letters.

[9]  C. Lintott,et al.  Observations of the initial formation and evolution of spiral galaxies at 1 < z < 3 in the CANDELS fields , 2022, Monthly Notices of the Royal Astronomical Society.

[10]  D. Elbaz,et al.  GOODS-ALMA 2.0: Source catalog, number counts, and prevailing compact sizes in 1.1 mm galaxies , 2021, 2106.13246.

[11]  A. D. Feinstein,et al.  Extending the evolution of the stellar mass–size relation at z ≤ 2 to low stellar mass galaxies from HFF and CANDELS , 2021, Monthly Notices of the Royal Astronomical Society.

[12]  S. Iguchi,et al.  Spiral morphology in an intensely star-forming disk galaxy more than 12 billion years ago , 2021, Science.

[13]  A. Strom,et al.  The KBSS–KCWI survey: the connection between extended Ly α haloes and galaxy azimuthal angle at z ∼ 2–3 , 2021, Monthly Notices of the Royal Astronomical Society.

[14]  P. P. van der Werf,et al.  ALMA 1.3 mm Survey of Lensed Submillimeter Galaxies Selected by Herschel: Discovery of Spatially Extended SMGs and Implications , 2021, 2101.03677.

[15]  J. Leisenring,et al.  JWST Noise Floor. I. Random Error Sources in JWST NIRCam Time Series , 2020, The Astronomical Journal.

[16]  S. Wuyts,et al.  Structural Evolution in Massive Galaxies at z ∼ 2 , 2020, The Astrophysical Journal.

[17]  P. P. van der Werf,et al.  The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: The Nature of the Faintest Dusty Star-forming Galaxies , 2020, The Astrophysical Journal.

[18]  R. Bender,et al.  Rotation Curves in z ∼ 1–2 Star-forming Disks: Evidence for Cored Dark Matter Distributions , 2020, The Astrophysical Journal.

[19]  B. Groves,et al.  ALMA Reveals the Molecular Gas Properties of Five Star-forming Galaxies across the Main Sequence at 3 , 2020, The Astrophysical Journal.

[20]  C. C. Chen,et al.  An ALMA survey of the SCUBA-2 Cosmology Legacy Survey UKIDSS/UDS field: high-resolution dust continuum morphologies and the link between sub-millimetre galaxies and spheroid formation , 2019, Monthly Notices of the Royal Astronomical Society.

[21]  M. Kohandel,et al.  Kinematics of z ≥ 6 galaxies from [C ii] line emission , 2019, Monthly Notices of the Royal Astronomical Society.

[22]  J. Dunlop,et al.  Revealing the Stellar Mass and Dust Distributions of Submillimeter Galaxies at Redshift 2 , 2019, The Astrophysical Journal.

[23]  A. D. Feinstein,et al.  HFF-DeepSpace Photometric Catalogs of the 12 Hubble Frontier Fields, Clusters, and Parallels: Photometry, Photometric Redshifts, and Stellar Masses , 2018, 1801.09734.

[24]  R. Davé,et al.  Inferring the star formation histories of massive quiescent galaxies with bagpipes: evidence for multiple quenching mechanisms , 2017, Monthly Notices of the Royal Astronomical Society.

[25]  R. Bouwens,et al.  The ALMA Frontier Fields Survey - II. Multiwavelength Photometric analysis of 1.1mm continuum sources in Abell 2744, MACSJ0416.1-2403 and MACSJ1149.5+2223 , 2017, 1706.09605.

[26]  A. Bolatto,et al.  The EDGE-CALIFA Survey: Interferometric Observations of 126 Galaxies with CARMA , 2017, 1704.02504.

[27]  A. Fontana,et al.  The relationship between galaxy and dark matter halo size from z ∼ 3 to the present , 2017, 1701.03526.

[28]  R. J. Wainscoat,et al.  The Pan-STARRS1 Database and Data Products , 2016, The Astrophysical Journal Supplement Series.

[29]  C. C. Chen,et al.  KILOPARSEC-SCALE DUST DISKS IN HIGH-REDSHIFT LUMINOUS SUBMILLIMETER GALAXIES , 2016, The Astrophysical Journal.

[30]  S. Wuyts,et al.  BULGE-FORMING GALAXIES WITH AN EXTENDED ROTATING DISK AT z ∼ 2 , 2016, 1608.05412.

[31]  R. Bouwens,et al.  The ALMA Frontier Fields Survey. I. 1.1 mm continuum detections in Abell 2744, MACS J0416.1-2403 and MACS J1149.5+2223 , 2016, 1607.03808.

[32]  C. Carollo,et al.  The confinement of star-forming galaxies into a main sequence through episodes of gas compaction, depletion and replenishment , 2015, 1509.02529.

[33]  Cosmology,et al.  The Argo simulation – II. The early build-up of the Hubble sequence , 2014, 1410.6818.

[34]  D. Calzetti,et al.  Cool dust heating and temperature mixing in nearby star-forming galaxies , 2014, 1409.5916.

[35]  J. Silverman,et al.  A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.

[36]  C. Conselice The Evolution of Galaxy Structure Over Cosmic Time , 2014, 1403.2783.

[37]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[38]  C. Steidel,et al.  High velocity dispersion in a rare grand-design spiral galaxy at redshift z = 2.18 , 2012, Nature.

[39]  J. Urquhart,et al.  The effect of spiral arms on star formation in the Galaxy , 2012, 1204.1578.

[40]  Benjamin L. Davis,et al.  MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION , 2012, 1202.4780.

[41]  C. Winge,et al.  The effects of the interactions on the kinematics, stellar population and metallicity of AM 2322−821 with Gemini/GMOS , 2011, 1105.4581.

[42]  Masamune Oguri,et al.  glafic: Software Package for Analyzing Gravitational Lensing , 2010 .

[43]  M. Rodrigues,et al.  The Hubble sequence: just a vestige of merger events? , 2009, 0903.3962.

[44]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[45]  Casey Papovich,et al.  The Luminosity, Stellar Mass, and Number Density Evolution of Field Galaxies of Known Morphology from z = 0.5 to 3 , 2004, astro-ph/0405001.

[46]  Michael C. Liu,et al.  Optical and Near-Infrared Spectroscopy of a High-Redshift Hard X-Ray-emitting Spiral Galaxy , 2002, astro-ph/0212240.

[47]  P. Kroupa The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.

[48]  B. Elmegreen Star Formation from Galaxies to Globules , 2001, astro-ph/0207114.

[49]  E. Bell,et al.  Stellar Mass-to-Light Ratios and the Tully-Fisher Relation , 2000, astro-ph/0008056.

[50]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[51]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[52]  Frank H. Shu,et al.  On the Spiral Structure of Disk Galaxies. , 1964 .