Mineralogy, petrology and P-T conditions of the spodumene pegmatites and surrounding meta-sediments in Lhozhag, eastern Himalaya

[1]  Yong‐Fei Zheng,et al.  The petrogenetic relationship between migmatite and granite in the Himalayan orogen: Petrological and geochemical constraints , 2023, Lithos.

[2]  Fu-guan Wu,et al.  The Himalayan Collisional Orogeny: A Metamorphic Perspective , 2022, Acta Geologica Sinica - English Edition.

[3]  R. Romer,et al.  Mobilization of tin during continental subduction-accretion processes , 2022, Geology.

[4]  Yun-hui Zhang,et al.  Himalayan leucogranites: A review of geochemical and isotopic characteristics, timing of formation, genesis, and rare metal mineralization , 2022, Earth-Science Reviews.

[5]  S. Iaccarino,et al.  Multi-stage evolution of the South Tibetan Detachment System in central Himalaya: Insights from carbonate-bearing rocks , 2022, Journal of Structural Geology.

[6]  A. Williams-Jones,et al.  The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces , 2021, Geology.

[7]  J. Connolly,et al.  GeoPS: An interactive visual computing tool for thermodynamic modelling of phase equilibria , 2021, Journal of Metamorphic Geology.

[8]  Fu-Yuan Wu,et al.  First evidence of eclogites overprinted by ultrahigh temperature metamorphism in Everest East, Himalaya: Implications for collisional tectonics on early Earth , 2021 .

[9]  Lei Xie,et al.  Spodumene pegmatites from the Pusila pluton in the higher Himalaya, South Tibet: Lithium mineralization in a highly fractionated leucogranite batholith , 2020 .

[10]  Congyu Liu,et al.  Tantalum and niobium mineralization from F- and Cl-rich fluid in the lepidolite-rich pegmatite from the Renli deposit in northern Hunan, China: Constraints of fluid inclusions and lepidolite crystallization experiments , 2019 .

[11]  S. Hanson,et al.  Anatectic pegmatites of the Oxford County pegmatite field, Maine, USA , 2019, The Canadian Mineralogist.

[12]  Denghong Wang,et al.  Fluid Characteristics and Evolution of the Zhawulong Granitic Pegmatite Lithium Deposit in the Ganzi‐Songpan Region, Southwestern China , 2019, Acta Geologica Sinica - English Edition.

[13]  R. Romer,et al.  Protolith-Related Thermal Controls on the Decoupling of Sn and W in Sn-W Metallogenic Provinces: Insights from the Nanling Region, China , 2019, Economic Geology.

[14]  M. F. Márquez-Zavalía,et al.  Metallogenesis of the Totoral LCT rare-element pegmatite district, San Luis, Argentina: A review , 2019, Journal of South American Earth Sciences.

[15]  D. London Ore-forming processes within granitic pegmatites , 2018, Ore Geology Reviews.

[16]  M. Searle,et al.  Structural and thermal evolution of the South Tibetan Detachment shear zone in the Mt Everest region, from the 1933 sample collection of L. R. Wager , 2018, Special Publications.

[17]  H. Mali,et al.  Spodumene Pegmatites and Related Leucogranites from the AustroAlpine Unit (Eastern Alps, Central Europe): Field Relations, Petrography, Geochemistry, and Geochronology , 2018, The Canadian Mineralogist.

[18]  R. Romer,et al.  Tin in granitic melts: The role of melting temperature and protolith composition , 2018, Lithos.

[19]  Zhidan Zhao,et al.  Leucogranites in Lhozag, southern Tibet: Implications for the tectonic evolution of the eastern Himalaya , 2017 .

[20]  Lei Xie,et al.  A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet , 2017, Science China Earth Sciences.

[21]  B. Simons,et al.  The Petrogenesis of the Early Permian Variscan granites of the Cornubian Batholith - lower plate post-collisional peraluminous magmatism in the Rhenohercynian Zone of SW England , 2016 .

[22]  S. Klemperer,et al.  Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya , 2016 .

[23]  R. Tartèse,et al.  Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition , 2016 .

[24]  J. Cottle,et al.  Reconciling Himalayan midcrustal discontinuities: The Main Central thrust system , 2015 .

[25]  S. Salvi,et al.  The Origin of Skarn-Hosted Rare-Metal Mineralization in the Ambohimirahavavy Alkaline Complex, Madagascar , 2015 .

[26]  Fu-Yuan Wu,et al.  Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model , 2014 .

[27]  R. Powell,et al.  The effect of Mn on mineral stability in metapelites revisited: new a–x relations for manganese‐bearing minerals , 2014 .

[28]  R. Carosi,et al.  Leucogranite intruding the South Tibetan Detachment in western Nepal: implications for exhumation models in the Himalayas , 2013 .

[29]  Gregory A. Keoleian,et al.  Global lithium resources: Relative importance of pegmatite, brine and other deposits , 2012 .

[30]  M. Tiepolo,et al.  Miocene andalusite leucogranite in central-east Himalaya (Everest–Masang Kang area): Low-pressure melting during heating , 2012 .

[31]  D. Dingwell,et al.  Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite , 2012 .

[32]  S. Salvi,et al.  Tin and associated metal and metalloid geochemistry by femtosecond LA-ICP-QMS microanalysis of pegmatite– leucogranite melt and fluid inclusions: new evidence for melt–melt–fluid immiscibility , 2012, Mineralogical Magazine.

[33]  Roger Powell,et al.  An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids , 2011 .

[34]  T. Takeshita,et al.  Metamorphic P–T profile and P–T path discontinuity across the far‐eastern Nepal Himalaya: investigation of channel flow models , 2010 .

[35]  S. E. Swanson,et al.  Skeletal tourmaline, undercooling, and crystallization history of the Stone Mountain granite, Georgia, U.S.A. , 2010 .

[36]  James A. D. Connolly,et al.  The geodynamic equation of state: What and how , 2009 .

[37]  D. London THE ORIGIN OF PRIMARY TEXTURES IN GRANITIC PEGMATITES , 2009 .

[38]  M. Searle,et al.  P–T–t–D paths of Everest Series schist, Nepal , 2008 .

[39]  J. Student,et al.  Rapid crystallization of the Animikie Red Ace Pegmatite, Florence county, northeastern Wisconsin: inclusion microthermometry and conductive-cooling modeling , 2008 .

[40]  E. Watson,et al.  Temperature spectra of zircon crystallization in plutonic rocks , 2007 .

[41]  Chunming Wu,et al.  Valid garnet–biotite (GB) geothermometry and garnet–aluminum silicate–plagioclase–quartz (GASP) geobarometry in metapelitic rocks☆ , 2006 .

[42]  D. London Granitic pegmatites: an assessment of current concepts and directions for the future , 2005 .

[43]  Jeffrey Lee,et al.  Evolution of North Himalayan gneiss domes: structural and metamorphic studies in Mabja Dome, southern Tibet , 2004 .

[44]  Jian Zhang,et al.  Empirical Garnet-Biotite-Plagioclase-Quartz (GBPQ) Geobarometry in Medium- to High-Grade Metapelites* , 2004 .

[45]  R. Powell,et al.  Calculated phase equilibria for low‐ and medium‐pressure metapelites in the KFMASH and KMnFMASH systems , 2004 .

[46]  C. Miller,et al.  Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance , 2003 .

[47]  M. Searle,et al.  The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal–South Tibet , 2003, Journal of the Geological Society.

[48]  H. Förster,et al.  The correlation between lithium and magnesium in trioctahedral micas: Improved equations for Li2O estimation from MgO data , 1999, Mineralogical Magazine.

[49]  N. Harris,et al.  Experimental Constraints on Himalayan Anatexis , 1998 .

[50]  K. Hodges,et al.  Shisha Pangma Leucogranite, South Tibetan Himalaya: Field Relations, Geochemistry, Age, Origin, and Emplacement , 1997, The Journal of Geology.

[51]  R. Rudnick Making continental crust , 1995, Nature.

[52]  J. Montel A model for monazite/ melt equilibrium and application to the generation of granitic magmas , 1993 .

[53]  P. Černý Rare-element Granitic Pegmatites. Part II: Regional to Global Environments and Petrogenesis , 1991 .

[54]  P. Černý Rare-element Granitic Pegmatites. Part I: Anatomy and Internal Evolution of Pegmatitic Deposits , 1991 .

[55]  B. Chakoumakos,et al.  Pressure-temperature constraints on the crystallization of the Harding Pegmatite, Taos County, New Mexico , 1990 .

[56]  S. Lahti,et al.  Bityite 2M 1 from Eräjärvi compared with related Li-Be brittle micas , 1985 .

[57]  P. Eadington,et al.  Some aspects of the hydrothermal reactions of tin during skarn formation , 1983 .

[58]  T. M. Harrison,et al.  Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types , 1983 .

[59]  T. Kwak,et al.  Geology and genesis of the F-Sn-W (-Be-Zn) skarn (wrigglite) at Moina, Tasmania , 1981 .

[60]  D. Stewart Petrogenesis of lithium-rich pegmatites , 1978 .

[61]  F. G. Smith Complex inclusions in pegmatitic minerals , 1953 .

[62]  Li Xiaofeng,et al.  Petrogenesis of the highly fractionated granites and their mineralizations in Nanling Range, South China , 2023, Acta Petrologica Sinica.

[63]  Qin Kezhang,et al.  Discovery of the Qongjiagang giant lithium pegmatite deposit in Himalaya, Tibet, China , 2021, Acta Petrologica Sinica.

[64]  Lei Xie,et al.  Highly fractionated Himalayan leucogranites and associated rare-metal mineralization , 2020 .

[65]  Paul D. Asimow,et al.  Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites , 2017 .

[66]  P. Davidson,et al.  Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state — Consequences for the formation of pegmatites and ore deposits , 2016 .

[67]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[68]  JrUNN-CHonNc LrN,et al.  The crystal structure of a Li , Be-rich brittle mica : a dioctahedral-trioctahedral intermediate , 2007 .

[69]  SrBpnBN GucceNFIetNI Cation ordering in lepidolite , 2007 .

[70]  G. Dipple,et al.  World Skarn Deposits , 2005 .

[71]  C. Teyssier,et al.  Isothermal decompression, partial melting and exhumation of deep continental crust , 2004, Geological Society, London, Special Publications.

[72]  Zhu Jin Magmatic-Hydrothermal Evolution and Genesis of Koktokay No.3 Rare Metal Pegmatite Dyke, Altai, China , 2000 .

[73]  E. Spooner,et al.  The volatile geochemistry of magmatic H2O-CO2 fluid inclusions from the Tanco zoned granitic pegmatite, southeastern Manitoba, Canada☆ , 1992 .

[74]  C. J. Bray,et al.  A discussion of the Jahns–Burnham proposal for the formation of zoned granitic pegmatites using solid-liquid-vapour inclusions from the Tanco Pegmatite, S.E. Manitoba, Canada , 1988, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[75]  P. Fort,et al.  Metamorphism and magmatism during the Himalayan collision , 1986 .

[76]  A. Lacroix Les minéraux des filons de pegmatite à tourmaline lithique de Madagascar , 1908 .

[77]  vro LoNooN Magmatic-hydrothermal transition in the Tanco rare-element pegmatite : Evidence from fluid inclusions and phase-equilibrium experiments , 2022 .