Multi-parametric space-time computational vademecum for parametric studies: Application to real time welding simulations

Abstract Real time simulations of welding processes remain intractable despite the impressive increasing computing power. This paper presents the case of a thermo-elasto-plastic problem with located moving heat loading. A novel non-intrusive a posteriori reduced order strategy for building multiparametric computational vademecum dedicated to real-time simulations of nonlinear thermo-mechanical problems is proposed. The high order proper generalized decomposition (HOPGD) is used to seek separated representation of solutions with some precomputed snapshots. Furthermore, a relaxation method is successfully applied to accelerate this procedure. The accuracy of the constructed computational vademecum is controlled by a localized multigrid selection method that allows an automatic selection of snapshots in the areas of interest of the parameter space. Examples of multiparametric computational vademecum taking into account some material parameters will be shown in this paper.

[1]  Siamak Niroomandi,et al.  Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models , 2012, Comput. Methods Programs Biomed..

[2]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[3]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations , 2007 .

[4]  A. Huespe,et al.  High-performance model reduction techniques in computational multiscale homogenization , 2014 .

[5]  David Néron,et al.  A rational strategy for the resolution of parametrized problems in the PGD framework , 2013 .

[6]  David Ryckelynck Hyper‐reduction of mechanical models involving internal variables , 2009 .

[7]  Daniel A. Tortorelli,et al.  A displacement-based reference frame formulation for steady-state thermo-elasto-plastic material processes , 1999 .

[8]  David Néron,et al.  Virtual charts of solutions for parametrized nonlinear equations , 2014 .

[9]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[10]  A. Ammar,et al.  PGD-Based Computational Vademecum for Efficient Design, Optimization and Control , 2013, Archives of Computational Methods in Engineering.

[11]  S Niroomandi,et al.  Real‐time simulation of biological soft tissues: a PGD approach , 2013, International journal for numerical methods in biomedical engineering.

[12]  Bernard Haasdonk,et al.  A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space , 2011 .

[13]  Pedro Díez,et al.  Real time parameter identification and solution reconstruction from experimental data using the Proper Generalized Decomposition , 2015 .

[14]  Ye Lu,et al.  Space–time POD based computational vademecums for parametric studies: application to thermo-mechanical problems , 2018, Adv. Model. Simul. Eng. Sci..

[15]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[16]  Pierre Ladevèze,et al.  Virtual charts for shape optimization of structures , 2013 .

[17]  A. Huerta,et al.  Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: Application to harbor agitation , 2015 .

[18]  Francisco Chinesta,et al.  Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models , 2010 .

[19]  Benjamin Stamm,et al.  Locally Adaptive Greedy Approximations for Anisotropic Parameter Reduced Basis Spaces , 2012, SIAM J. Sci. Comput..

[20]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[21]  Siamak Niroomandi,et al.  Model order reduction for hyperelastic materials , 2010 .

[22]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[23]  Julien Yvonnet,et al.  The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains , 2007, J. Comput. Phys..

[24]  Bertrand Iooss,et al.  Global sensitivity analysis in welding simulations-What are the material data you really need? , 2011 .

[25]  Alain Combescure,et al.  Efficient hyper reduced-order model (HROM) for parametric studies of the 3D thermo-elasto-plastic calculation , 2015 .

[26]  A. Nouy A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations , 2010 .

[27]  A. Corigliano,et al.  Model Order Reduction and domain decomposition strategies for the solution of the dynamic elastic–plastic structural problem , 2015 .

[28]  Mickaël Duval,et al.  Apports du couplage non-intrusif en mécanique non-linéaire des structures. (Contributions of non-intrusive coupling in nonlinear structural mechanics) , 2016 .

[29]  Siamak Niroomandi,et al.  Real-time deformable models of non-linear tissues by model reduction techniques , 2008, Comput. Methods Programs Biomed..

[30]  P. Ladevèze,et al.  Sur une famille d'algorithmes en mécanique des structures , 1985 .

[31]  Elías Cueto,et al.  PGD-Based Modeling of Materials, Structures and Processes , 2014 .

[32]  P. Ladevèze Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation , 1998 .

[33]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[34]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[35]  Bruce M. Irons,et al.  A version of the Aitken accelerator for computer iteration , 1969 .

[36]  Icíar Alfaro,et al.  Computational vademecums for the real-time simulation of haptic collision between nonlinear solids , 2015 .

[37]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[38]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[39]  Charbel Farhat,et al.  Nonlinear model order reduction based on local reduced‐order bases , 2012 .

[40]  D. Ryckelynck,et al.  A priori hyperreduction method: an adaptive approach , 2005 .

[41]  P. Michaleris,et al.  Optimization of thermal processes using an Eulerian formulation and application in laser surface hardening , 2000 .

[42]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[43]  Jens L. Eftang,et al.  An hp certified reduced basis method for parametrized parabolic partial differential equations , 2011 .

[44]  Adrien Leygue,et al.  Vademecum‐based GFEM (V‐GFEM): optimal enrichment for transient problems , 2016 .

[45]  Adrien Leygue,et al.  Proper Generalized Decomposition based dynamic data-driven control of thermal processes ☆ , 2012 .

[46]  Francisco Chinesta,et al.  Computational vademecums for real‐time simulation of surgical cutting in haptic environments , 2016 .

[47]  P Kerfriden,et al.  Bridging Proper Orthogonal Decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems. , 2011, Computer methods in applied mechanics and engineering.

[48]  Elías Cueto,et al.  Real‐time monitoring of thermal processes by reduced‐order modeling , 2015 .