A bi-objective genetic approach for the selection of sugarcane varieties to comply with environmental and economic requirements
暂无分享,去创建一个
[1] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[2] P. Siarry,et al. Multiobjective Optimization: Principles and Case Studies , 2004 .
[3] T. L. Saaty,et al. The computational algorithm for the parametric objective function , 1955 .
[4] Helenice de Oliveira Florentino,et al. Multiobjective 0-1 integer programming for the use of sugarcane residual biomass in energy cogeneration , 2011, Int. Trans. Oper. Res..
[5] Gary B. Lamont,et al. Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .
[6] O. H. Brownlee,et al. ACTIVITY ANALYSIS OF PRODUCTION AND ALLOCATION , 1952 .
[7] Maria João Alves,et al. MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem , 2007, Comput. Oper. Res..
[8] Asoke Kumar Bhunia,et al. Elitist genetic algorithm for assignment problem with imprecise goal , 2007, Eur. J. Oper. Res..
[9] Klaudia Frankfurter. Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .
[10] Serpil Sayin,et al. Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming , 2000, Math. Program..
[11] Paul R. Harper,et al. A genetic algorithm for the project assignment problem , 2005, Comput. Oper. Res..
[12] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[13] Günther R. Raidl,et al. An improved hybrid genetic algorithm for the generalized assignment problem , 2004, SAC '04.
[14] M. Fisher,et al. A multiplier adjustment method for the generalized assignment problem , 1986 .
[15] Jared L. Cohon,et al. Multiobjective programming and planning , 2004 .
[16] Gary B. Lamont,et al. Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.
[17] R. K. Ursem. Multi-objective Optimization using Evolutionary Algorithms , 2009 .
[18] Helenice de Oliveira Florentino,et al. MULTIOBJECTIVE OPTIMIZATION OF ECONOMIC BALANCES OF SUGARCANE HARVEST BIOMASS , 2008 .
[19] George Mavrotas,et al. Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms , 2010, Eur. J. Oper. Res..
[20] Charles Gide,et al. Cours d'économie politique , 1911 .
[21] Margarida Moz,et al. Solving a bi-objective nurse rerostering problem by using a utopic Pareto genetic heuristic , 2008, J. Heuristics.
[22] Lothar Thiele,et al. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.
[23] Rajeev Kumar,et al. Assessing solution quality of biobjective 0-1 knapsack problem using evolutionary and heuristic algorithms , 2010, Appl. Soft Comput..
[24] Joseph L. Zinnes,et al. Theory and Methods of Scaling. , 1958 .
[25] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .
[26] Maria Márcia Pereira Sartori,et al. Determination of the optimal quantity of crop residues for energy in sugarcane crop management using linear programming in variety selection and planting strategy , 2001 .
[27] Xavier Gandibleux,et al. A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..
[28] Tomaz Caetano Cannavam Ripoli,et al. Biomassa de cana-de-açúcar: colheita, energia e ambiente , 2004 .
[29] Jason R. Schott. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .