Optimising an inductor circuit and a two-stage operational transconductance amplifier using evolutionary and classical algorithms

In this work, we compare evolutionary algorithms and standard optimisation methods on two circuit design problems: the parameter extraction of a device circuit model and the multiobjective optimisation of an operational transconductance amplifier. The comparison is made in terms of quality of the solutions and computational effort, that is, objective function evaluations needed to compute them. The experimental results obtained show that standard techniques are more robust than evolutionary algorithms, while the latter are more effective in terms of the standard metrics and function calls. In particular for the multiobjective problem, the observed Pareto front determined by evolutionary algorithms has a better spread of solutions with a larger number of non-dominated solutions when compared to the standard multiobjective techniques.

[1]  Carlos A. Coello Coello,et al.  Convergence Analysis of a Multiobjective Artificial Immune System Algorithm , 2004, ICARIS.

[2]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[3]  William B. Langdon Pareto, Population Partitioning, Price and Genetic Programming , 1995 .

[4]  G. Greco,et al.  A new scalable SPICE model for spiral inductors in substrate with buried layer , 2003, Radio and Wireless Conference, 2003. RAWCON '03. Proceedings.

[5]  K Joardar,et al.  Genetic Algorithm Based MOSFET Model Parameter Extraction , 2000 .

[6]  Lucas Bradstreet,et al.  Heuristics for optimizing the calculation of hypervolume for multi-objective optimization problems , 2005, 2005 IEEE Congress on Evolutionary Computation.

[7]  J.L. Huertas,et al.  A prototype tool for optimum analog sizing using simulated annealing , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[8]  Gary B. Lamont,et al.  Applications Of Multi-Objective Evolutionary Algorithms , 2004 .

[9]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[10]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[11]  Daniel Merkle,et al.  Bi-Criterion Optimization with Multi Colony Ant Algorithms , 2001, EMO.

[12]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[13]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[14]  Jong-Hwan Kim,et al.  Multicriteria Fuzzy Control Using Evolutionary Programming , 1997, Inf. Sci..

[15]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[16]  Hirotaka Nakayama,et al.  Theory of Multiobjective Optimization , 1985 .

[17]  Rob A. Rutenbar,et al.  Anaconda: simulation-based synthesis of analog circuits viastochastic pattern search , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[18]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[19]  A. Galluzzo,et al.  Small-signal and noise modeling of submicrometer self aligned bipolar transistor , 1998, Proceedings RAWCON 98. 1998 IEEE Radio and Wireless Conference (Cat. No.98EX194).

[20]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .