Selective degradation of the recalcitrant cell wall of Scenedesmus quadricauda CASA CC202

[1]  A. Synytsya,et al.  Application of FT-IR spectroscopy in detection of food hydrocolloids in confectionery jellies and food supplements , 2018 .

[2]  D. Beniac,et al.  The scanning electron microscope in microbiology and diagnosis of infectious disease , 2016, Scientific Reports.

[3]  Zain Akram,et al.  Bioprocessing of citrus waste peel for induced pectinase production by Aspergillus niger; its purification and characterization , 2016 .

[4]  S. García-Mauriño,et al.  Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer , 2015, Marine drugs.

[5]  Zhenhong Yuan,et al.  Enzyme-Assisted Extraction of Oil from Wet Microalgae Scenedesmus sp. G4 , 2015 .

[6]  S. Purton,et al.  Improving recombinant protein production in the Chlamydomonas reinhardtii chloroplast using vivid Verde Fluorescent Protein as a reporter , 2015, Biotechnology journal.

[7]  Jin-Suk Lee,et al.  Sonication-assisted homogenization system for improved lipid extraction from Chlorella vulgaris , 2015 .

[8]  E. Menéndez,et al.  Calcofluor white, an Alternative to Propidium Iodide for Plant Tissues Staining in Studies of Root Colonization by Fluorescent-tagged Rhizobia , 2015 .

[9]  P. Anastas,et al.  Enzymatic and acid hydrolysis of Tetraselmis suecica for polysaccharide characterization. , 2014, Bioresource technology.

[10]  M. Takriff,et al.  An overview: biomolecules from microalgae for animal feed and aquaculture , 2014, Journal of Biological Research-Thessaloniki.

[11]  Theodore J Abatzopoulos,et al.  A new era for Journal of Biological Research-Thessaloniki , 2014, Journal of Biological Research-Thessaloniki.

[12]  Xiaoning Jiang,et al.  Disruption of microalgal cells using high-frequency focused ultrasound. , 2014, Bioresource technology.

[13]  S. Gianesella,et al.  Improvement in microalgae lipid extraction using a sonication-assisted method , 2013 .

[14]  J. Cuello,et al.  Bioethanol production from the macroalgae Sargassum spp. , 2013, Bioresource technology.

[15]  Rishi Gupta,et al.  Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. , 2013, Bioresource technology.

[16]  S. Mayfield,et al.  27 High-value Recombinant Protein Production in Microalgae , 2013 .

[17]  N. Clément,et al.  Optimization of hydrolysis conditions of Palmaria palmata to enhance R-phycoerythrin extraction. , 2013, Bioresource technology.

[18]  J. D. Brabanter,et al.  Antioxidant potential of microalgae in relation to their phenolic and carotenoid content , 2012, Journal of Applied Phycology.

[19]  U. Maier,et al.  Algae as Protein Factories: Expression of a Human Antibody and the Respective Antigen in the Diatom Phaeodactylum tricornutum , 2011, PloS one.

[20]  Razif Harun,et al.  Enzymatic hydrolysis of microalgal biomass for bioethanol production , 2011 .

[21]  J. A. Jorge,et al.  Biotechnological potential of alternative carbon sources for production of pectinases by Rhizopus microsporus var. rhizopodiformis , 2011 .

[22]  Wen‐Teng Wu,et al.  Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. , 2010, Bioresource technology.

[23]  Michael Hannon,et al.  Biofuels from algae: challenges and potential , 2010, Biofuels.

[24]  Klaas J. Hellingwerf,et al.  Algal Photosynthesis as the Primary Driver for a Sustainable Development in Energy, Feed, and Food Production , 2010, Marine Biotechnology.

[25]  D. L. Wetzel,et al.  FT-IR Microspectroscopy Enhances Biological and Ecological Analysis of Algae , 2009 .

[26]  D. L. Wetzel,et al.  Subcellular localized chemical imaging of benthic algal nutritional content via HgCdTe array FT-IR , 2008 .

[27]  Z. Svirčev,et al.  MICROALGAE AND CYANOBACTERIA: FOOD FOR THOUGHT 1 , 2008, Journal of phycology.

[28]  E. Becker Micro-algae as a source of protein. , 2007, Biotechnology advances.

[29]  N. Takakuwa,et al.  Purification of the extracellular pectinolytic enzyme from the fungus Rhizopus oryzae NBRC 4707. , 2004, Microbiological research.

[30]  A. Synytsya Fourier transform Raman and infrared spectroscopy of pectins , 2003 .

[31]  G. Zacchi,et al.  The effect of shaking regime on the rate and extent of enzymatic hydrolysis of cellulose. , 2001, Journal of biotechnology.

[32]  Shraga Shany,et al.  Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk , 2000, Journal of Applied Phycology.

[33]  J. Asenjo,et al.  Enzymatic lysis and disruption of microbial cells , 1987 .

[34]  E. Rice,et al.  An improved method for the extraction and electrophoresis of proteins and active enzymes from fucalean macroalgae (Phaeophyta) , 1987 .

[35]  Yusuf Chisti,et al.  Disruption of microbial cells for intracellular products , 1986 .

[36]  O. Ciferri,et al.  Spirulina, the edible microorganism. , 1983, Microbiological reviews.

[37]  R. Gross,et al.  The Nutritional Quality of Scenedesmus acutus Produced in a Semi‐industrial Plant in Peru , 1982, Berichte der Deutschen Botanischen Gesellschaft.

[38]  T. Blsalputra,et al.  THE CELL WALL OF SCENEDESMUS QUADRICAUDA , 1963 .

[39]  S. Carlquist ON THE OCCURRENCE OF INTERCELLULAR PECTIC WARTS IN COMPOSITAE , 1956 .

[40]  Y. Oh,et al.  Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. , 2016, Bioresource technology.

[41]  Ki‐Hyun Kim,et al.  Pretreatment of microalgal biomass for enhanced recovery/extraction of reducing sugars and proteins , 2015, Bioprocess and Biosystems Engineering.

[42]  S. Purton,et al.  A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii. , 2014, Methods in molecular biology.

[43]  S. Mayfield,et al.  High-value Recombinant Protein Production in Microalgae , 2013 .

[44]  Henri G. Gerken,et al.  Enzymatic cell wall degradation of Chlorellavulgaris and other microalgae for biofuels production , 2012, Planta.

[45]  I. Priyadarshani,et al.  Commercial and industrial applications of micro algae - A review , 2012 .

[46]  Z. Ahmed,et al.  Microalgae: a renewable source for second generation biofuels. , 2011 .

[47]  Joanna Hornatowska Visualisation of pectins and proteins by microscopy , 2006 .

[48]  J. Kongkiattikajorn,et al.  A Study of Optimal Conditions for Reducing Sugars Production from Cassava Peels by Diluted Acid and Enzymes , 2004 .

[49]  Joël Fleurence,et al.  Seaweed proteins: biochemical, nutritional aspects and potential uses , 1999 .

[50]  J. E. Lozano,et al.  Determination of enzymatic activities of commercial pectinases for the clarification of apple juice , 1998 .

[51]  P. Courcoux,et al.  Extraction and partial characterization of protein from the green algae Ulva sp. , 1994 .

[52]  A. Vonshak Recent advances in microalgal biotechnology. , 1990, Biotechnology advances.

[53]  H. Noda,et al.  Proteins of protoplasts from red alga Porphyra yezoensis. , 1990 .

[54]  Stephen C. Fry,et al.  Cross-Linking of Matrix Polymers in the Growing Cell Walls of Angiosperms , 1986 .

[55]  A Gałat,et al.  Study of the Raman scattering and infrared absorption spectra of branched polysaccharides. , 1980, Acta biochimica Polonica.

[56]  F. Smith,et al.  COLORIMETRIC METHOD FOR DETER-MINATION OF SUGAR AND RELATED SUBSTANCE , 1956 .

[57]  John S. Burlew,et al.  Algal culture from laboratory to pilot plant. , 1953 .

[58]  A. S. Foster The Use of Tannic Acid and Iron Chloride for Staining Cell Walls in Meristematic Tissue , 1934 .