Error Estimation of the Homotopy Perturbation Method to Solve Second Kind Volterra Integral Equations with Piecewise Smooth Kernels: Application of the CADNA Library

This paper studies the second kind linear Volterra integral equations (IEs) with a discontinuous kernel obtained from the load leveling and energy system problems. For solving this problem, we propose the homotopy perturbation method (HPM). We then discuss the convergence theorem and the error analysis of the formulation to validate the accuracy of the obtained solutions. In this study, the Controle et Estimation Stochastique des Arrondis de Calculs method (CESTAC) and the Control of Accuracy and Debugging for Numerical Applications (CADNA) library are used to control the rounding error estimation. We also take advantage of the discrete stochastic arithmetic (DSA) to find the optimal iteration, optimal error and optimal approximation of the HPM. The comparative graphs between exact and approximate solutions show the accuracy and efficiency of the method.

[1]  Soheil Ganjefar,et al.  Maximum power extraction from fractional order doubly fed induction generator based wind turbines using homotopy singular perturbation method , 2020 .

[2]  Ji-Huan He A coupling method of a homotopy technique and a perturbation technique for non-linear problems , 2000 .

[3]  Ji-Huan He,et al.  Homotopy perturbation method: a new nonlinear analytical technique , 2003, Appl. Math. Comput..

[4]  Davod Khojasteh Salkuyeh,et al.  Optimal iterate of the power and inverse iteration methods , 2009 .

[5]  Fang Liu,et al.  A Dynamic Analysis of Energy Storage With Renewable and Diesel Generation Using Volterra Equations , 2019, IEEE Transactions on Industrial Informatics.

[6]  Christophe Denis,et al.  Numerical 'health check' for scientific codes: the CADNA approach , 2007, Comput. Phys. Commun..

[7]  Ildar Muftahov,et al.  Numeric solution of Volterra integral equations of the first kind with discontinuous kernels , 2017, J. Comput. Appl. Math..

[8]  B. S. Kashkari,et al.  Homotopy perturbation method for studying dissipative nonplanar solitons in an electronegative complex plasma , 2020 .

[9]  N. Sidorov,et al.  On small solutions of nonlinear equations with vector parameter in sectorial neighborhoods , 2012 .

[10]  Z. Eshkuvatov,et al.  Homotopy perturbation method for the hypersingular integral equations of the first kind , 2018, Ain Shams Engineering Journal.

[11]  S. Abbasbandy,et al.  A stochastic scheme for solving definite integrals , 2005 .

[12]  Denis Sidorov,et al.  Discrete Spectrum Reconstruction Using Integral Approximation Algorithm , 2017, Applied spectroscopy.

[13]  N. Sidorov,et al.  Potentiality, group symmetry and bifurcation in the theory of branching equation , 1990, Differential and Integral Equations.

[14]  Denis Sidorov,et al.  Existence and blow-up of Kantorovich principal continuous solutions of nonlinear integral equations , 2014 .

[15]  Yuxiang Zhu,et al.  Stochastic Arithmetic in Multiprecision , 2011, Math. Comput. Sci..

[16]  C. Bota,et al.  Approximate analytical solutions of nonlinear differential equations using the Least Squares Homotopy Perturbation Method , 2017 .

[18]  M. A. Araghi,et al.  Finding optimal step of fuzzy Newton-Cotes integration rules by using the CESTAC method , 2017 .

[19]  Samad Noeiaghdam,et al.  Control of accuracy on Taylor-collocation method for load leveling problem , 2019, The Bulletin of Irkutsk State University. Series Mathematics.

[20]  M. A. Araghi,et al.  Homotopy analysis transform method for solving generalized Abel's fuzzy integral equations of the first kind , 2015, 2015 4th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS).

[21]  Zulqurnain Sabir,et al.  On a New Model Based on Third-Order Nonlinear Multisingular Functional Differential Equations , 2020 .

[22]  Fabienne Jézéquel,et al.  CADNA_C: A version of CADNA for use with C or C++ programs , 2010, Comput. Phys. Commun..

[23]  S. Abbasbandy,et al.  The use of the stochastic arithmetic to estimate the value of interpolation polynomial with optimal degree , 2004 .

[24]  Jean Vignes,et al.  Discrete Stochastic Arithmetic for Validating Results of Numerical Software , 2004, Numerical Algorithms.

[25]  D. Sidorov,et al.  Nonlinear Systems of Volterra Equations with Piecewise Smooth Kernels: Numerical Solution and Application for Power Systems Operation , 2020, Mathematics.

[26]  Nonlocal Effects to Neutron Diffusion Equation in a Nuclear Reactor , 2020 .

[27]  Y. Raffoul Classification of Positive Solutions of Nonlinear Systems of Volterra Integral Equations , 2011 .

[28]  Fabienne Jézéquel,et al.  High Performance Numerical Validation using Stochastic Arithmetic , 2015 .

[29]  Dumitru Baleanu,et al.  Analysis of Homotopy Perturbation Method for Solving Fractional Order Differential Equations , 2019, Mathematics.

[30]  Denis Sidorov,et al.  Solvability of systems of volterra integral equations of the first kind with piecewise continuous kernels , 2013 .

[31]  Saeid Abbasbandy,et al.  Valid implementation of Sinc-collocation method to solve the fuzzy Fredholm integral equation , 2020, J. Comput. Appl. Math..

[32]  Samad Noeiaghdam,et al.  A Valid Scheme to Evaluate Fuzzy Definite Integrals by Applying the CADNA Library , 2017, Int. J. Fuzzy Syst. Appl..

[33]  Fabienne Jézéquel,et al.  CADNA: a library for estimating round-off error propagation , 2008, Comput. Phys. Commun..

[34]  Alexey E. Zhukov,et al.  Volterra Models in Load Leveling Problem , 2018 .

[35]  Jean Vignes,et al.  A stochastic arithmetic for reliable scientific computation , 1993 .

[36]  Fabienne Jézéquel,et al.  Reliable computation of a multiple integral involved in the neutron star theory , 2006, Math. Comput. Simul..

[37]  B. Ghanbari,et al.  Exact traveling wave solutions for resonance nonlinear Schrödinger equation with intermodal dispersions and the Kerr law nonlinearity , 2019, Mathematical Methods in the Applied Sciences.

[38]  Fabienne Jézéquel,et al.  Dynamical Control of Computations Using the Trapezoidal and Simpson's Rules , 1998, J. Univers. Comput. Sci..

[39]  Fabienne Jézéquel A dynamical strategy for approximation methods , 2006 .

[40]  Ji-Huan He Homotopy perturbation technique , 1999 .

[41]  A. Ullah,et al.  An approximate analytical solution of the Allen-Cahn equation using homotopy perturbation method and homotopy analysis method , 2019, Heliyon.

[42]  Saeid Abbasbandy,et al.  Finding optimal convergence control parameter in the homotopy analysis method to solve integral equations based on the stochastic arithmetic , 2018, Numerical Algorithms.

[43]  Stef Graillat,et al.  Numerical Validation of Compensated Summation Algorithms with Stochastic Arithmetic , 2015, Electron. Notes Theor. Comput. Sci..

[44]  Fabienne Jézéquel,et al.  Computation of an Infinite Integral Using Romberg'S Method , 2004, Numerical Algorithms.

[45]  Fabienne Jézéquel,et al.  Dynamical control of converging sequences computation , 2004 .

[46]  Denis Sidorov,et al.  On parametric families of solutions of Volterra integral equations of the first kind with piecewise smooth kernel , 2013 .

[47]  Martin Vingron,et al.  Multiple Sequence Comparison and Consistency on Multipartite Graphs , 1995 .

[48]  S. A. Belbas,et al.  Numerical solution of multiple nonlinear Volterra integral equations , 2011, Appl. Math. Comput..

[49]  H. M. Baskonus,et al.  Some mixed trigonometric complex soliton solutions to the perturbed nonlinear Schrödinger equation , 2020 .

[50]  Davod Khojasteh Salkuyeh,et al.  Numerical accuracy of a certain class of iterative methods for solving linear system , 2006, Appl. Math. Comput..