FPCR-Net: Feature Pyramidal Correlation and Residual Reconstruction for Semi-supervised Optical Flow Estimation

Optical flow estimation is an important yet challenging problem in the field of video analytics. The features of different semantics levels/layers of a convolutional neural network can provide information of different granularity. To exploit such flexible and comprehensive information, we propose a semi-supervised Feature Pyramidal Correlation and Residual Reconstruction Network (FPCR-Net) for optical flow estimation from frame pairs. It consists of two main modules: pyramid correlation mapping and residual reconstruction. The pyramid correlation mapping module takes advantage of the multi-scale correlations of global/local patches by aggregating features of different scales to form a multi-level cost volume. The residual reconstruction module aims to reconstruct the sub-band high-frequency residuals of finer optical flow in each stage. Based on the pyramid correlation mapping, we further propose a correlation-warping-normalization (CWN) module to efficiently exploit the correlation dependency. Experiment results show that the proposed scheme achieves the state-of-the-art performance, with improvement by 0.80, 1.15 and 0.10 in terms of average end-point error (AEE) against competing baseline methods - FlowNet2, LiteFlowNet and PWC-Net on the Final pass of Sintel dataset, respectively.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Thomas Brox,et al.  FlowNet: Learning Optical Flow with Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[3]  Thomas Brox,et al.  A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Andreas Geiger,et al.  Deep Discrete Flow , 2016, ACCV.

[5]  Vladlen Koltun,et al.  Full Flow: Optical Flow Estimation By Global Optimization over Regular Grids , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Michael J. Black,et al.  Optical Flow Estimation Using a Spatial Pyramid Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Jia Xu,et al.  Accurate Optical Flow via Direct Cost Volume Processing , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[9]  Cordelia Schmid,et al.  EpicFlow: Edge-preserving interpolation of correspondences for optical flow , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Jan Kautz,et al.  PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[11]  Michael J. Black,et al.  A Naturalistic Open Source Movie for Optical Flow Evaluation , 2012, ECCV.

[12]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[14]  Joachim Weickert,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Optic Flow in Harmony Optic Flow in Harmony Optic Flow in Harmony , 2022 .

[16]  Didier Stricker,et al.  Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[18]  Michael J. Black,et al.  Efficient sparse-to-dense optical flow estimation using a learned basis and layers , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Cordelia Schmid,et al.  DeepFlow: Large Displacement Optical Flow with Deep Matching , 2013, 2013 IEEE International Conference on Computer Vision.

[20]  Didier Stricker,et al.  Supplementary material of : CNN-based Patch Matching for Optical Flow with Thresholded Hinge Embedding Loss , 2017 .

[21]  Xiaoou Tang,et al.  LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[22]  Thomas Brox,et al.  FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).