Maximally Chaotic Dynamical System of Infinite Dimensionality

We analyse the infinite-dimensional limit of the maximally chaotic dynamical systems that are defined on N-dimensional tori. These hyperbolic systems found successful application in computer algorithms that generate high-quality pseudorandom numbers for advanced Monte Carlo simulations. The chaotic properties of these systems are increasing with N because the corresponding Kolmogorov-Sinai entropy grows linearly with N . We calculated the spectrum and the entropy of the system that appears in the infinite dimensional limit. We demonstrated that the limiting system has exponentially expanding and contracting foliations and therefore belongs to the Anosov C-systems of infinite dimensionality. The liming system defines the hyperbolic evolution of the continuous functions very similar to the evolution of a velocity function describing the hydrodynamic flow of fluids. We compare the chaotic properties of the limiting system with those of the hydrodynamic flow of incompressible ideal fluid on a torus investigated by Arnold. This maximally chaotic system can find application in Monte Carlo method, statistical physics and digital signal processing. PACS: 45.30.+s; 05.45.Jn; 89.70.Cf; 05.45.Pq 1 ar X iv :2 10 5. 12 96 8v 2 [ nl in .C D ] 1 0 Ju n 20 21

[1]  S. Matinyan,et al.  Nonlinear plane waves in the massless Yang-Mills theory , 1979 .

[2]  V. Belinskiǐ,et al.  A General Solution of the Einstein Equations with a Time Singularity , 1982 .

[3]  G. Savvidy Classical and quantum mechanics of non-abelian gauge fields , 1984 .

[4]  Y. Sinai,et al.  Markov partitions and C-diffeomorphisms , 2020, Hamiltonian Dynamical Systems.

[5]  G. Savvidy,et al.  Configuration manifold of Yang-Mills classical mechanics , 1983 .

[6]  G. ’t Hooft The Scattering Matrix Approach for the Quantum Black Hole an Overview , 1996 .

[7]  Jordan S. Cotler,et al.  Black holes and random matrices , 2016, 1611.04650.

[8]  J. Maldacena,et al.  A bound on chaos , 2015, Journal of High Energy Physics.

[9]  A. Eddington,et al.  Principles of Stellar Dynamics , 1943, Nature.

[10]  A. Lukatskii Curvature of the group of measure-preserving diffeomorphisms of the n-dimensional torus , 1984 .

[11]  E. Hopf Ergodic theory and the geodesic flow on surfaces of constant negative curvature , 1971 .

[12]  E. Hopf Proof of Gibbs' Hypothesis on the Tendency toward Statistical Equilibrium. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[13]  G. Savvidy Yang-Mills quantum mechanics , 1985 .

[14]  Konstantin G. Savvidy,et al.  The MIXMAX random number generator , 2014, Comput. Phys. Commun..

[15]  D. Anosov,et al.  Ergodic Properties of Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature , 2020 .

[16]  Page Information in black hole radiation. , 1993, Physical review letters.

[17]  R. Bowen Periodic Orbits for Hyperbolic Flows , 1972 .

[18]  G. Savvidy,et al.  Collective relaxation of stellar systems , 1986 .

[19]  S. Shenker,et al.  Black holes and the butterfly effect , 2013, Journal of High Energy Physics.

[20]  Guy Gur-Ari,et al.  Chaos in classical D0-brane mechanics , 2015, Journal of High Energy Physics.

[21]  R. Rattazzi,et al.  The quantum mechanics of perfect fluids , 2010, 1011.6396.

[22]  S. Matinyan,et al.  CLASSICAL YANG-MILLS MECHANICS. NONLINEAR COLOR OSCILLATIONS , 1981 .

[23]  S. Hawking Breakdown of Predictability in Gravitational Collapse , 1976 .

[24]  G. Savvidy,et al.  Spectrum and entropy of C-systems MIXMAX random number generator , 2015, 1510.06274.

[26]  Stephen W Hawking,et al.  Soft Hair on Black Holes. , 2016, Physical review letters.

[27]  A. Shiryayev New Metric Invariant of Transitive Dynamical Systems and Automorphisms of Lebesgue Spaces , 1993 .

[28]  G. Savvidy,et al.  Geometry of a group of area-preserving diffeomorphisms , 1989 .

[29]  S. Hawking The Information Paradox for Black Holes. , 2015, 1509.01147.

[30]  A. Zhiboedov,et al.  Gravitational memory, BMS supertranslations and soft theorems , 2014, 1411.5745.

[31]  G. Savvidy,et al.  On the Monte Carlo simulation of physical systems , 1991 .

[32]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[33]  G. Savvidy The Yang-Mills classical mechanics as a Kolmogorov K-system , 1983 .

[34]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[35]  E. Artin Ein mechanisches system mit quasiergodischen bahnen , 1924 .

[36]  Susskind,et al.  The stretched horizon and black hole complementarity. , 1993, Physical review. D, Particles and fields.

[37]  Ya. G. Sinai,et al.  On the Notion of Entropy of a Dynamical System , 2010 .

[38]  B. Chirikov,et al.  Stochastic Oscillation of Classical {Yang-Mills} Fields. (In Russian) , 1981 .

[39]  G. Savvidy Maximally chaotic dynamical systems , 2020 .

[40]  V. Rohlin Metric properties of endomorphisms of compact commutative groups , 1967 .

[41]  N. K. Smolentsev Diffeomorphism groups of compact manifolds , 2007 .

[42]  J. Barrow GRAVITATIONAL MEMORY , 1993, Annals of the New York Academy of Sciences.