Maximally Chaotic Dynamical System of Infinite Dimensionality
暂无分享,去创建一个
[1] S. Matinyan,et al. Nonlinear plane waves in the massless Yang-Mills theory , 1979 .
[2] V. Belinskiǐ,et al. A General Solution of the Einstein Equations with a Time Singularity , 1982 .
[3] G. Savvidy. Classical and quantum mechanics of non-abelian gauge fields , 1984 .
[4] Y. Sinai,et al. Markov partitions and C-diffeomorphisms , 2020, Hamiltonian Dynamical Systems.
[5] G. Savvidy,et al. Configuration manifold of Yang-Mills classical mechanics , 1983 .
[6] G. ’t Hooft. The Scattering Matrix Approach for the Quantum Black Hole an Overview , 1996 .
[7] Jordan S. Cotler,et al. Black holes and random matrices , 2016, 1611.04650.
[8] J. Maldacena,et al. A bound on chaos , 2015, Journal of High Energy Physics.
[9] A. Eddington,et al. Principles of Stellar Dynamics , 1943, Nature.
[10] A. Lukatskii. Curvature of the group of measure-preserving diffeomorphisms of the n-dimensional torus , 1984 .
[11] E. Hopf. Ergodic theory and the geodesic flow on surfaces of constant negative curvature , 1971 .
[12] E. Hopf. Proof of Gibbs' Hypothesis on the Tendency toward Statistical Equilibrium. , 1932, Proceedings of the National Academy of Sciences of the United States of America.
[13] G. Savvidy. Yang-Mills quantum mechanics , 1985 .
[14] Konstantin G. Savvidy,et al. The MIXMAX random number generator , 2014, Comput. Phys. Commun..
[15] D. Anosov,et al. Ergodic Properties of Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature , 2020 .
[16] Page. Information in black hole radiation. , 1993, Physical review letters.
[17] R. Bowen. Periodic Orbits for Hyperbolic Flows , 1972 .
[18] G. Savvidy,et al. Collective relaxation of stellar systems , 1986 .
[19] S. Shenker,et al. Black holes and the butterfly effect , 2013, Journal of High Energy Physics.
[20] Guy Gur-Ari,et al. Chaos in classical D0-brane mechanics , 2015, Journal of High Energy Physics.
[21] R. Rattazzi,et al. The quantum mechanics of perfect fluids , 2010, 1011.6396.
[22] S. Matinyan,et al. CLASSICAL YANG-MILLS MECHANICS. NONLINEAR COLOR OSCILLATIONS , 1981 .
[23] S. Hawking. Breakdown of Predictability in Gravitational Collapse , 1976 .
[24] G. Savvidy,et al. Spectrum and entropy of C-systems MIXMAX random number generator , 2015, 1510.06274.
[26] Stephen W Hawking,et al. Soft Hair on Black Holes. , 2016, Physical review letters.
[27] A. Shiryayev. New Metric Invariant of Transitive Dynamical Systems and Automorphisms of Lebesgue Spaces , 1993 .
[28] G. Savvidy,et al. Geometry of a group of area-preserving diffeomorphisms , 1989 .
[29] S. Hawking. The Information Paradox for Black Holes. , 2015, 1509.01147.
[30] A. Zhiboedov,et al. Gravitational memory, BMS supertranslations and soft theorems , 2014, 1411.5745.
[31] G. Savvidy,et al. On the Monte Carlo simulation of physical systems , 1991 .
[32] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .
[33] G. Savvidy. The Yang-Mills classical mechanics as a Kolmogorov K-system , 1983 .
[34] V. I. Arnolʹd,et al. Ergodic problems of classical mechanics , 1968 .
[35] E. Artin. Ein mechanisches system mit quasiergodischen bahnen , 1924 .
[36] Susskind,et al. The stretched horizon and black hole complementarity. , 1993, Physical review. D, Particles and fields.
[37] Ya. G. Sinai,et al. On the Notion of Entropy of a Dynamical System , 2010 .
[38] B. Chirikov,et al. Stochastic Oscillation of Classical {Yang-Mills} Fields. (In Russian) , 1981 .
[39] G. Savvidy. Maximally chaotic dynamical systems , 2020 .
[40] V. Rohlin. Metric properties of endomorphisms of compact commutative groups , 1967 .
[41] N. K. Smolentsev. Diffeomorphism groups of compact manifolds , 2007 .
[42] J. Barrow. GRAVITATIONAL MEMORY , 1993, Annals of the New York Academy of Sciences.