A lattice model to manage the vector and the infection of the Xylella fastidiosa on olive trees

[1]  S. Soubeyrand,et al.  Identifying Lookouts for Epidemio-Surveillance: Application to the Emergence of Xylella fastidiosa in France. , 2019, Phytopathology.

[2]  D. Bosco,et al.  Plant Selection and Population Trend of Spittlebug Immatures (Hemiptera: Aphrophoridae) in Olive Groves of the Apulia Region of Italy , 2018, Journal of Economic Entomology.

[3]  S. Soubeyrand,et al.  Inferring pathogen dynamics from temporal count data: the emergence of Xylella fastidiosa in France is probably not recent , 2018, The New phytologist.

[4]  V. Cavalieri,et al.  Evaluation of Efficacy of Different Insecticides Against Philaenus spumarius L., Vector of Xylella fastidiosa in Olive Orchards in Southern Italy, 2015–17 , 2018 .

[5]  P. Beck,et al.  Network analysis reveals why Xylella fastidiosa will persist in Europe , 2017, Scientific Reports.

[6]  J. Bullock,et al.  Modelling the spread and control of Xylella fastidiosa in the early stages of invasion in Apulia, Italy , 2017, Biological Invasions.

[7]  James M. Bullock,et al.  Modelling the spread and control of Xylella fastidiosa in the early stages of invasion in Apulia, Italy , 2017, Biological Invasions.

[8]  F. Porcelli,et al.  Preliminary results of comparative efficacy evalutation trials against Philaenus spumarius L., vector of Xylella fastidiosa , 2017 .

[9]  F. Porcelli,et al.  Spittlebugs as vectors of Xylella fastidiosa in olive orchards in Italy , 2016, Journal of Pest Science.

[10]  G. Martelli,et al.  Transcriptome profiling of two olive cultivars in response to infection by the CoDiRO strain of Xylella fastidiosa subsp. pauca , 2016, BMC Genomics.

[11]  G. Martelli,et al.  Transcriptome profiling of two olive cultivars in response to infection by the CoDiRO strain of Xylella fastidiosa subsp. pauca , 2016, BMC Genomics.

[12]  G. Martelli,et al.  Intercepted isolates of Xylella fastidiosa in Europe reveal novel genetic diversity , 2016, European Journal of Plant Pathology.

[13]  Annalisa Fierro,et al.  Multiple Lattice Model for Influenza Spreading , 2015, PloS one.

[14]  A. Italiano,et al.  Draft Genome Sequence of the Xylella fastidiosa CoDiRO Strain , 2015, Genome Announcements.

[15]  L. Nunney,et al.  The Complex Biogeography of the Plant Pathogen Xylella fastidiosa: Genetic Evidence of Introductions and Subspecific Introgression in Central America , 2014, PloS one.

[16]  F. Porcelli,et al.  Infectivity and Transmission of Xylella fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia, Italy , 2014, Journal of economic entomology.

[17]  F. Porcelli,et al.  MEZZI E METODI DI CONTROLLO INTEGRATO DEL PUNTERUOLO ROSSO DELLE PALME , 2014 .

[18]  M. Saponari,et al.  Isolation, genetics and preliminary data on the pathogenicity of the Xylella fastidiosa CoDiRO strain. , 2014 .

[19]  Annalisa Fierro,et al.  Lattice Model for Influenza Spreading with Spontaneous Behavioral Changes , 2013, PloS one.

[20]  G. P. Martelli,et al.  IDENTIFICATION OF DNA SEQUENCES RELATED TO XYLELLA FASTIDIOSA IN OLEANDER, ALMOND AND OLIVE TREES EXHIBITING LEAF SCORCH SYMPTOMS IN APULIA (SOUTHERN ITALY) , 2013 .

[21]  F. Nigro,et al.  FUNGAL SPECIES ASSOCIATED WITH A SEVERE DECLINE OF OLIVE IN SOUTHERN ITALY , 2013 .

[22]  Annalisa Fierro,et al.  A Lattice Model for Influenza Spreading , 2013, PloS one.

[23]  F. Porcelli,et al.  KEY FACTORS IN RED PALM WEEVIL BIOLOGY (RHYNCHOPHORUS FERRUGINEUS) (CURCULIONOIDEA) , 2012 .

[24]  A. Fierro,et al.  A simple stochastic lattice gas model for H1N1 pandemic. Application to the Italian epidemiological data , 2011, The European physical journal. E, Soft matter.

[25]  Marjorie J. Wonham,et al.  An epidemiological model for West Nile virus: invasion analysis and control applications , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  D. Hopkins,et al.  Xylella fastidiosa: Cause of Pierce's Disease of Grapevine and Other Emergent Diseases. , 2002, Plant disease.

[27]  S. Yurtsever On the polymorphic meadow spittlebug, Philaenus spumarius (L.) (Homoptera: Cercopidae). , 2000 .

[28]  Frej Ossiannilsson The families Cicadidae, Cercopidae, Membracidae, and Cicadellidae(excl. Deltocephalinae) , 1981 .

[29]  A. Purcell Vector preference and inoculation efficiency as components of resistance to Pierce's disease in European grape cultivars. , 1981 .

[30]  R. Wiegert Population Energetics of Meadow Spittlebugs (Philaenus spumarius L.) as Affected by Migration and Habitat , 1964 .

[31]  F. G. Mundinger The Control of Spittle Insects in Strawberry Plantings , 1946 .

[32]  RONALD ROSS,et al.  Some Quantitative Studies in Epidemiology , 1911, Nature.