A hierarchical approach to wrapper induction

With the tremendous amount of information that becomes available on the Web on a daily basis, the ability to quickly develop information agents has become a crucial problem. A vital component of any Web-based information agent is a set of wrappers that can extract the relevant data from semistructured information sources. Our novel approach to wrapper induction is based on the idea of hierarchical information extraction, which turns the hard problem of extracting data from an arbitrarily complex document into a series of easier extraction tasks. We introduce an inductive algorithm, STALKER, that generates high accuracy extraction rules based on user-labeled training examples. Labeling the training data represents the major bottleneck in using wrapper induction techniques, and our experimental results show that STALKER does significantly better then other approaches; on one hand, STALKER requires up to two orders of magnitude fewer examples than other algorithms, while on the other hand it can handle information sources that could not be wrapped by existing techniques.