Determining neutrino mass from the cosmic microwave background alone.

Distortions of cosmic microwave background temperature and polarization maps caused by gravitational lensing, observable with high angular resolution and high sensitivity, can be used to measure the neutrino mass. Assuming two massless species and one with mass m(nu), we forecast sigma(m(nu))=0.15 eV from the Planck satellite and sigma(m(nu))=0.04 eV from observations with twice the angular resolution and approximately 20 times the sensitivity. A detection is likely at this higher sensitivity since the observation of atmospheric neutrino oscillations requires Deltam(2)(nu) greater, similar (0.04 eV)(2).

[1]  Neutrino mass and dark energy from weak lensing. , 2002, Physical review letters.

[2]  Wayne Hu,et al.  Mass Reconstruction with Cosmic Microwave Background Polarization , 2002 .

[3]  Weak lensing detection in CMB maps , 1996, astro-ph/9611012.

[4]  Wayne Hu,et al.  � 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. POWER SPECTRUM TOMOGRAPHY WITH WEAK LENSING , 1999 .

[5]  Wayne HuDaniel J. Eisenstein Small Scale Perturbations in a General MDM Cosmology , 1997 .

[6]  Matias Zaldarriaga,et al.  Gravitational lensing effect on cosmic microwave background polarization , 1998, astro-ph/9803150.

[7]  Initial Conditions for Inflation , 2002, hep-th/0209231.

[8]  Max Tegmark,et al.  Foregrounds and Forecasts for the Cosmic Microwave Background , 2000 .

[9]  Wayne Hu Dark Synergy: Gravitational Lensing and the CMB , 2001 .

[10]  Asantha Cooray,et al.  Separation of gravitational-wave and cosmic-shear contributions to cosmic microwave background polarization. , 2002, Physical review letters.

[11]  M. Zaldarriaga,et al.  Microwave Background Constraints on Cosmological Parameters , 1997, astro-ph/9702157.

[12]  C. Skordis,et al.  Probing the Reionization History of the Universe using the Cosmic Microwave Background Polarization , 2002, astro-ph/0207591.

[13]  Max Tegmark,et al.  Weighing Neutrinos with Galaxy Surveys , 1997, astro-ph/9712057.

[14]  U. Seljak,et al.  Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.

[15]  Kevork N. Abazajian Telling three from four neutrinos with cosmology , 2002 .

[16]  M. Fukugita,et al.  Cosmic Microwave Background Observables and Their Cosmological Implications , 2001 .

[17]  Do solar neutrinos decay , 2002, hep-ph/0204111.

[18]  Richard Gispert,et al.  Foregrounds and CMB experiments: I. Semi-analytical estimates of contamination , 1999 .

[19]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) first year observations: TE polarization , 2003, astro-ph/0302213.

[20]  J. Silk,et al.  On Breaking Cosmic Degeneracy , 1997, astro-ph/9710364.

[21]  Efficient cosmological parameter estimation from microwave background anisotropies , 2002, astro-ph/0206014.

[22]  T. Feldmann,et al.  Non-factorizable Contributions to $B \to \pi\pi$ Decays , 2004 .

[23]  D. Eisenstein,et al.  Cosmic Complementarity: Joint Parameter Estimation from Cosmic Microwave Background Experiments and Redshift Surveys , 1998, astro-ph/9807130.

[24]  J. R. Bond,et al.  The collisionless damping of density fluctuations in an expanding universe , 1983 .

[25]  Lloyd Knox Forecasting foreground impact on cosmic microwave background measurements , 1999 .

[26]  S. J. Dodds,et al.  Non-linear evolution of cosmological power spectra , 1996 .

[27]  J. R. Bond,et al.  Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies , 1998 .

[28]  Y. Zdesenko Colloquium : The future of double β decay research , 2002 .

[29]  Albert Stebbins,et al.  A Probe of Primordial Gravity Waves and Vorticity , 1997 .

[30]  M. Fukugita,et al.  CMB Observables and Their Cosmological Implications , 2000, astro-ph/0006436.

[31]  S. Dodelson,et al.  Impact of Inhomogeneous Reionization on Cosmic Microwave Background Anisotropy , 1998, astro-ph/9805012.

[32]  Yong-Seon Song,et al.  Limit on the detectability of the energy scale of inflation. , 2002, Physical review letters.

[33]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[34]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[35]  C. Kraus,et al.  Limits on neutrino masses from tritium β decay , 2002 .

[36]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[37]  M. Halpern,et al.  First Year Wilkinson Microwave Anisotropy Probe Observations: Dark Energy Induced Correlation with Radio Sources , 2003, The Astrophysical Journal.

[38]  Chung-Pei Ma Linear Power Spectra in Cold+Hot Dark Matter Models: Analytical Approximations and Applications , 1996 .