Determining the percolation threshold for (FeCoZr)x(CaF2)(100−x) nanocomposites produced by pure argon ion-beam sputtering

Abstract This study examines the frequency and temperature dependence of conductivity, phase shift angle and capacity of the (FeCoZr)x (CaF2)(100−x) nanocomposites, with the metal phase content in the range of 45 at.%   0. Activation energy of conductivity, determined from the Arrhenius plot, is about ΔE ≈ 0.061 eV. For a metallic phase content above 67 at.%, the metallic type of conductivity occurs, for which the derivative dσ/dT

[1]  A. Rodzik,et al.  Dielectric constant and ac conductivity of semi-insulating Cd[sub 1−x]Mn[sub x]Te semiconductors , 1997 .

[2]  T. Kołtunowicz,et al.  Dielectric Properties of (CoFeZr)_x(PZT)_{100-x} Nanocomposites Produced with a Beam of Argon and Oxygen Ions , 2014 .

[3]  O. Ivasishin,et al.  Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings , 2016 .

[4]  M. Carrada,et al.  Preventing the Degradation of Ag Nanoparticles Using an Ultrathin a¿Al2O3 Layer as Protective Barrier , 2013 .

[5]  V. M. Beresnev,et al.  Arc-Evaporated Nanoscale Multilayer Nitride-Based Coatings for Protection Against Wear, Corrosion, and Oxidation , 2016 .

[6]  Oleksandr Viacheslavovych Bondar,et al.  Structure and properties of arc evaporated nanoscale TiN/MoN multilayered systems , 2015 .

[7]  T. Kołtunowicz Test Station for Frequency-Domain Dielectric Spectroscopy of Nanocomposites and Semiconductors , 2015 .

[8]  Tomasz N. Koltunowicz,et al.  Inductive type properties of FeCoZr–CaF2 and FeCoZr–PZT nanocomposites , 2015, Journal of Materials Science: Materials in Electronics.

[9]  Zesong Wang,et al.  Leakage Current Mechanism of InN-Based Metal-Insulator-Semiconductor Structures with Al2O3 as Dielectric Layers , 2016, Nanoscale Research Letters.

[10]  Vitalii Bondariev,et al.  The effect of annealing on induction like properties of (FeCoZr)x(CaF2)(100−x) nanocomposite films produced by ion-beam sputtering in the vacuum environment , 2015 .

[11]  Miroslav Gutten,et al.  Assessment of water content in an impregnated pressboard based on DC conductivity measurements theoretical assumptions , 2014, IEEE Transactions on Dielectrics and Electrical Insulation.

[12]  V. M. Beresnev,et al.  Nanocoatings Nanosystems Nanotechnologies , 2012 .

[13]  Cheng Liu,et al.  Densification and mechanical properties of fine-grained Al2O3–ZrO2 composites consolidated by spark plasma sintering , 2012 .

[14]  F. F. Komarov,et al.  Formation and Characterization of Nanostructured Composite Coatings Based on the TiN Phase , 2014 .

[15]  F. F. Komarov,et al.  Multilayered Nano-Microcomposite Ti-Al-N/TiN/Al2O3Coatings. Their Structure and Properties , 2011 .

[16]  G. Zvejnieks,et al.  Void lattice formation in electron irradiated CaF 2 : Statistical analysis of experimental data and cellular automata simulations , 2016 .

[17]  Jozef Kúdelčík,et al.  Influence Of Nanoparticles Diameter On Structural Properties Of Magnetic Fluid In Magnetic Field , 2015 .

[18]  M. Gutten,et al.  Permittivity of a composite of cellulose, mineral oil, and water nanoparticles: theoretical assumptions , 2016, Cellulose.

[19]  Marek Opielak,et al.  Structure and Properties of Co-Cr Coatings After a Pulsed Jet Treatment , 2012 .

[20]  P. Bury,et al.  Structure of transformer oil-based magnetic fluids studied using acoustic spectroscopy , 2013 .

[21]  Vladimir V. Uglov,et al.  Nanocomposite protective coatings based on Ti-N-Cr/Ni-Cr-B-Si-Fe, their structure and properties , 2009 .

[22]  Oleksandr Boiko,et al.  Impedance model of metal-dielectric nanocomposites produced by ion-beam sputtering in vacuum conditions and its experimental verification for thin films of (FeCoZr)x(PZT)(100−x) , 2015 .

[23]  Michael Tinkham,et al.  Introduction to mesoscopic physics , 1997 .

[24]  Elizaveta A. Petrikova,et al.  COMBINED MODIFICATION OF ALUMINUM BY ELECTRON-ION-PLASMA METHODS , 2014 .

[25]  G. Nowaczyk,et al.  Combined reactive/non-reactive DC magnetron sputtering of high temperature composite AlN–TiB2–TiSi2 , 2016 .

[26]  V. Banerjee,et al.  Dynamics of magnetic nanoparticle suspensions , 2009, 1208.4061.

[27]  P. Bury,et al.  Structure of nanoparticles in transformer oil-based magnetic fluids, anisotropy of acoustic attenuation , 2015 .

[28]  Runhua Fan,et al.  High‐Frequency Negative Permittivity from Fe/Al2O3 Composites with High Metal Contents , 2012 .

[29]  Konrad Kierczyński,et al.  Formation of water nanodrops in cellulose impregnated with insulating oil , 2015, Cellulose.