The Combination of Adaptive Pseudospectral Method and Structure Detection Procedure for Solving Dynamic Optimization Problems with Discontinuous Control Profiles

To cope with computational challenges on dynamic optimization problems with discontinuous control profiles, a methodology combining the adaptive pseudospectral method with the structure detection procedure is presented. First, the adaptive pseudospectral method, which divides time intervals based on an estimation of approximation error, is utilized to obtain potential sequence and type of arcs composed of discontinuous control profiles. Second, the derived information is exploited by the structure detection procedure to reformulate the original nonsmooth problem as a multistage problem (MSP), where adjacent arcs with the same input type are merged into one to remove unnecessary LGR points for the final approximation. Additionally, a stop criterion by monitoring variations of the Hamiltonian function at discrete points is proposed to estimate whether the computed solution satisfies the necessary conditions of optimality in the sense of Pontryagin’s Minimum Principle. The efficiency of the proposed method i...

[1]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .

[2]  Dominique Bonvin,et al.  Dynamic optimization of batch processes: I. Characterization of the nominal solution , 2003, Comput. Chem. Eng..

[3]  L. Biegler,et al.  A nested, simultaneous approach for dynamic optimization problems - II : the outer problem , 1997 .

[4]  I. Michael Ross,et al.  A review of pseudospectral optimal control: From theory to flight , 2012, Annu. Rev. Control..

[5]  William W. Hager,et al.  Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..

[6]  Wolfgang Marquardt,et al.  Continuous and Discrete Composite Adjoints for the Hessian of the Lagrangian in Shooting Algorithms for Dynamic Optimization , 2009, SIAM J. Sci. Comput..

[7]  I. Michael Ross,et al.  Spectral Algorithm for Pseudospectral Methods in Optimal Control , 2008, Journal of Guidance, Control, and Dynamics.

[8]  Sebastian Engell Feedback control for optimal process operation , 2007 .

[9]  Paul I. Barton,et al.  Dynamic Optimization in a Discontinuous World , 1998 .

[10]  L. Biegler,et al.  Advances in simultaneous strategies for dynamic process optimization , 2002 .

[11]  J. Betts,et al.  MESH REFINEMENT IN DIRECT TRANSCRIPTION METHODS FOR OPTIMAL CONTROL , 1998 .

[12]  W. Hager,et al.  An hp‐adaptive pseudospectral method for solving optimal control problems , 2011 .

[13]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[14]  Lorenz T. Biegler,et al.  Simultaneous dynamic optimization strategies: Recent advances and challenges , 2006, Comput. Chem. Eng..

[15]  I. Michael Ross,et al.  Pseudospectral Knotting Methods for Solving Optimal Control Problems , 2004 .

[16]  Wolfgang Marquardt,et al.  Detection and exploitation of the control switching structure in the solution of dynamic optimization problems , 2006 .

[17]  Fraser J Forbes,et al.  Model Structure and Adjustable Parameter Selection for Operations Optimization , 1994 .

[18]  David Benson,et al.  A Gauss pseudospectral transcription for optimal control , 2005 .

[19]  Anil V. Rao,et al.  Costate Estimation Using Multiple-Interval Pseudospectral Methods , 2011 .

[20]  Anil V. Rao,et al.  Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .

[21]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[22]  Anil V. Rao,et al.  Direct Trajectory Optimization Using a Variable Low-Order Adaptive Pseudospectral Method , 2011 .

[23]  Geoffrey T. Huntington,et al.  Comparison of Global and Local Collocation Methods for Optimal Control , 2008 .

[24]  Wolfgang Marquardt,et al.  Dynamic optimization using adaptive control vector parameterization , 2005, Comput. Chem. Eng..

[25]  William W. Hager,et al.  A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..

[26]  Wolfgang Marquardt,et al.  Adaptive switching structure detection for the solution of dynamic optimization problems , 2006 .

[27]  Lorenz T. Biegler,et al.  Convergence rates for direct transcription of optimal control problems using collocation at Radau points , 2008, Comput. Optim. Appl..

[28]  Wolfgang Marquardt,et al.  How to verify optimal controls computed by direct shooting methods? – A tutorial , 2012 .