An intuitive model of perceptual grouping for HCI design

Understanding and exploiting the abilities of the human visual system is an important part of the design of usable user interfaces and information visualizations. Good design enables quick, easy and veridical perception of key components of that design. An important facet of human vision is its ability to seemingly effortlessly perform "perceptual organization; it transforms individual feature estimates into perception of coherent regions, structures, and objects. We perceive regions grouped by proximity and feature similarity, grouping of curves by good continuation, and grouping of regions of coherent texture. In this paper, we discuss a simple model for a broad range of perceptual grouping phenomena. It takes as input an arbitrary image, and returns a structure describing the predicted visual organization of the image. We demonstrate that this model can capture aspects of traditional design rules, and predicts visual percepts in classic perceptual grouping displays.

[1]  Lindsay W. MacDonald,et al.  Display Systems: Design and Applications , 1999 .

[2]  James H. Elder,et al.  Multi-Scale Contour Extraction Based on Natural Image Statistics , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[3]  David G. Stork,et al.  Pattern Classification , 1973 .

[4]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[5]  D. Mumford Elastica and Computer Vision , 1994 .

[6]  S Grossberg,et al.  Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations , 1985, Perception & psychophysics.

[7]  M. Wertheimer Laws of organization in perceptual forms. , 1938 .

[8]  Jitendra Malik,et al.  A computational model of texture segmentation , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[10]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[11]  S. Kosslyn Understanding charts and graphs , 1989 .

[12]  Edward Rolf Tufte,et al.  The visual display of quantitative information , 1985 .

[13]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  C. Bajaj Algebraic Geometry and its Applications , 1994 .

[15]  Edward R. Tufte,et al.  The Visual Display of Quantitative Information , 1986 .

[16]  P. Fayers,et al.  The Visual Display of Quantitative Information , 1990 .

[17]  Alexei A. Efros,et al.  Fast bilateral filtering for the display of high-dynamic-range images , 2002 .

[18]  Frédo Durand,et al.  A Fast Approximation of the Bilateral Filter Using a Signal Processing Approach , 2006, International Journal of Computer Vision.

[19]  Tomaso Poggio,et al.  Computing texture boundaries from images , 1988, Nature.

[20]  Martin Wattenberg,et al.  A model of multi-scale perceptual organization in information graphics , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[21]  Jitendra Malik,et al.  Figure/Ground Assignment in Natural Images , 2006, ECCV.

[22]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Jock D. Mackinlay,et al.  Applying a theory of graphical presentation to the graphic design of user interfaces , 1988, UIST '88.

[24]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[25]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[28]  Ben Shneiderman,et al.  Evaluating spatial and textual style of displays , 1995 .

[29]  S. Palmer Hierarchical structure in perceptual representation , 1977, Cognitive Psychology.

[30]  Lance R. Williams,et al.  Segmentation of Multiple Salient Closed Contours from Real Images , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  D. Navon Forest before trees: The precedence of global features in visual perception , 1977, Cognitive Psychology.

[32]  Eric Saund,et al.  Symbolic Construction of a 2-D Scale-Space Image , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Nadja Schinkel-Bielefeld Contour Integration Models Predicting Human Behavior , 2007 .

[34]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[35]  P. Schönemann On artificial intelligence , 1985, Behavioral and Brain Sciences.

[36]  Keith Price,et al.  Picture Segmentation Using a Recursive Region Splitting Method , 1998 .

[37]  Carlo Tomasi,et al.  Edge, Junction, and Corner Detection Using Color Distributions , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Issei Fujishiro,et al.  The elements of graphing data , 2005, The Visual Computer.

[40]  J. Bergen,et al.  Texture segregation and orientation gradient , 1991, Vision Research.

[41]  Martin Wattenberg,et al.  Analyzing Perceptual Organization in Information Graphics , 2004, Inf. Vis..

[42]  Frédo Durand,et al.  A Topological Approach to Hierarchical Segmentation using Mean Shift , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  R. Watt,et al.  Families of models for gabor paths demonstrate the importance of spatial adjacency. , 2008, Journal of vision.

[44]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  J. Beck Textural segmentation, second-order statistics, and textural elements , 1983, Biological Cybernetics.

[46]  G. Logan The CODE theory of visual attention: an integration of space-based and object-based attention. , 1996, Psychological review.

[47]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[48]  Z Li,et al.  Pre-attentive segmentation in the primary visual cortex. , 1998, Spatial vision.

[49]  Jeffrey S. Perry,et al.  Edge co-occurrence in natural images predicts contour grouping performance , 2001, Vision Research.

[50]  Ruth Rosenholz,et al.  Significantly Different Textures: A Computational Model of Pre-attentive Texture Segmentation , 2000, ECCV.

[51]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[52]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[53]  Bela Julesz,et al.  A theory of preattentive texture discrimination based on first-order statistics of textons , 2004, Biological Cybernetics.

[54]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  James T. Enns,et al.  Harnessing Preattentive Processes for Multivariate Data Visualization , 1992 .