2-DOF control solutions for BLDC-m drives

The paper gives 2-DOF speed control solutions for BLDC-m drives with focus on design methodologies for servo systems. A classical 2-DOF structure and two variants of 2-DOF PI(D) control structures are briefly presented and some approaches regarding the methods are highlighted. A comparative study and case study with digital simulation results are included to exemplify the design methodologies.

[1]  Milos Manic,et al.  Self-Organizing Fuzzy Haptic Teleoperation of Mobile Robot Using Sparse Sonar Data , 2011, IEEE Transactions on Industrial Electronics.

[2]  Okyay Kaynak,et al.  Computing Gradient Vector and Jacobian Matrix in Arbitrarily Connected Neural Networks , 2008, IEEE Transactions on Industrial Electronics.

[3]  Zsolt Csaba Johanyák,et al.  Fuzzy Rule Interpolation Based on Polar Cuts , 2006 .

[4]  Asymmetrie general choquet integrals , 2009 .

[5]  Rodolfo E. Haber,et al.  An optimal fuzzy control system in a network environment based on simulated annealing. An application to a drilling process , 2009, Appl. Soft Comput..

[6]  Ramon Vilanova,et al.  Robust tuning of Two-Degree-of-Freedom (2-DoF) PI/PID based cascade control systems , 2009 .

[7]  Claudia-Adina Dragos,et al.  Speed and position control of BLDC servo systems with low inertia , 2011, 2011 2nd International Conference on Cognitive Infocommunications (CogInfoCom).

[8]  Yeung Yam,et al.  Singular value-based approximation with Takagi-Sugeno type fuzzy rule base , 1997, Proceedings of 6th International Fuzzy Systems Conference.

[9]  M. Araki,et al.  Two-Degree-of-Freedom PID Controllers , 2003 .

[10]  Drago Matko,et al.  A control strategy for platoons of differential drive wheeled mobile robot , 2011, Robotics Auton. Syst..

[11]  Antonio Visioli,et al.  Fuzzy logic based set-point weight tuning of PID controllers , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[12]  Z. Johanyák Student Evaluation Based On Fuzzy Rule Interpolation , 2010 .

[13]  Nikola Kasabov,et al.  Quantum-inspired Particle Swarm Optimisation for Integrated Feature and Parameter Optimisation of Evolving Spiking Neural Networks , 2011 .

[14]  I. Horowitz Synthesis of feedback systems , 1963 .

[15]  Z. Gao,et al.  A robust two-degree-of-freedom control design technique and its practical application , 2004, Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting..

[16]  Q. Han,et al.  Delay-range-dependent robust stabilization for uncertain T-S fuzzy control systems with interval time-varying delays , 2011, Inf. Sci..

[17]  Zora Konjovic,et al.  Linear fuzzy space based road lane model and detection , 2013, Knowl. Based Syst..

[18]  Stefan Preitl,et al.  ASPECTS CONCERNING THE TUNING OF 2-DOF FUZZY CONTROLLERS UDC 681.327.2 681.5.01 , 2010 .

[19]  Jon C. Clare,et al.  A practical approach to the design of robust speed controllers for machine drives , 2000, IEEE Trans. Ind. Electron..

[20]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[21]  Yeung Yam,et al.  SVD-based complexity reduction to TS fuzzy models , 2002, IEEE Trans. Ind. Electron..

[22]  Ladislav Madarász,et al.  Adaptation of Fuzzy Cognitive Maps - a Comparison Study , 2010 .

[23]  Igor Skrjanc,et al.  Direct fuzzy model‐reference adaptive control , 2002, Int. J. Intell. Syst..

[24]  József K. Tar,et al.  Generic two-degree-of-freedom linear and fuzzy controllers for integral processes , 2009, J. Frankl. Inst..

[25]  Stefan Preitl,et al.  An extension of tuning relations after symmetrical optimum method for PI and PID controllers , 1999, Autom..

[26]  Igor Skrjanc,et al.  Globally stable direct fuzzy model reference adaptive control , 2003, Fuzzy Sets Syst..

[27]  Claudia-Adina Dragos,et al.  2-DOF control solutions for BLDC-m drives , 2011 .

[28]  S. Kovács,et al.  A Brief Survey and Comparison on Various Interpolation Based Fuzzy Reasoning Methods , 2006 .

[29]  BRATISLAV DANKOVIĆ,et al.  A Class of Almost Orthogonal Filters , 2009, J. Circuits Syst. Comput..

[30]  Luca Bascetta,et al.  On the design of the feedforward compensator in two-degree-of-freedom controllers , 2006 .

[31]  Rolf Isermann,et al.  Mechatronic Systems: Fundamentals , 2003 .

[32]  Stefan Baldursson,et al.  BLDC Motor Modelling and Control - A Matlab®/Simulink® Implementation , 2005 .

[33]  Daniel Hladek,et al.  MULTI-ROBOT CONTROL SYSTEM FOR PURSUIT-EVASION PROBLEM , 2009 .

[34]  Igor Škrjanc,et al.  Adaptive law with a new leakage term , 2010 .

[35]  Claudia-Adina Dragos,et al.  Tuning of 2-DOF fuzzy PI(D) controllers. Laboratory applications , 2010, 2010 11th International Symposium on Computational Intelligence and Informatics (CINTI).

[36]  Okyay Kaynak,et al.  Type 2 Fuzzy Neural Structure for Identification and Control of Time-Varying Plants , 2010, IEEE Transactions on Industrial Electronics.

[37]  I. D. Landau,et al.  Digital Control Systems: Design, Identification and Implementation , 2006 .

[38]  Kou Yamada,et al.  A Design Method for Two-Degree-Of-Freedom Multi-Period Repetitive Controllers for Multiple-Input/multiple-Output Systems , 2011 .

[39]  Imre J. Rudas,et al.  On continuous triangular norms that are migrative , 2007, Fuzzy Sets Syst..

[40]  Milos Manic,et al.  Uncertainty-Robust Design of Interval Type-2 Fuzzy Logic Controller for Delta Parallel Robot , 2011, IEEE Transactions on Industrial Informatics.

[41]  Kyoung Kwan Ahn,et al.  Inverse Double NARX Fuzzy Modeling for System Identification , 2010, IEEE/ASME Transactions on Mechatronics.

[42]  Jian Luo,et al.  Model reference fuzzy adaptive PID control and its applications in typical industrial processes , 2008, 2008 IEEE International Conference on Automation and Logistics.

[43]  Jian-Xin Xu,et al.  Iterative Learning Control for Sampled-Data Systems: From Theory to Practice , 2011, IEEE Transactions on Industrial Electronics.

[44]  Plamen P. Angelov,et al.  Evolving classification of agents’ behaviors: a general approach , 2010, Evol. Syst..

[45]  Ren Hai-yan,et al.  Application of a self-tuning two degree of freedom PID controller based on fuzzy inference for PMSM , 2008, 2008 International Conference on Electrical Machines and Systems.