MAX, a novel retrotransposon of the BEL-Pao family, is nested within the Bari 1 cluster at the heterochromatic h39 region of chromosome 2 in Drosophila melanogaster

A homogeneous array of 80 tandem repeats of the Bari1 transposon is located in the pericentromeric h39 region of chromosome 2 of Drosophila melanogaster. Here, we report that the Bari1 cluster is interrupted by an 8556-bp insertion. DNA sequencing and database searches identified this insertion as a previously unannotated retrotransposon that we have named MAX. MAX possesses two ORFs; ORF1 putatively encodes a polyprotein comprising GAG and RT domains, while ORF2 could encode a 288-amino acid protein of unknown function. Alignment with the RT domains of known LTR retrotransposons shows that MAX belongs to the BEL-Pao family, which remarkable for its widespread presence in different taxa, including lower chordates. We have analyzed the distribution of MAX elements within representative species of the Sophophora subgroup and found that they are restricted to the species of the melanogaster complex, where they are heavily represented in the heterochromatin of all autosomes and on the Y chromosome.

[1]  S. Bonaccorsi,et al.  Looking at Drosophila mitotic chromosomes. , 1994, Methods in cell biology.

[2]  R. Britten,et al.  DNA sequence insertion and evolutionary variation in gene regulation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[3]  S. Henikoff,et al.  Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. , 2000, Genome research.

[4]  C. Walsh,et al.  Cytosine methylation and the ecology of intragenomic parasites. , 1997, Trends in genetics : TIG.

[5]  Eugene Berezikov,et al.  A search for reverse transcriptase-coding sequences reveals new non-LTR retrotransposons in the genome of Drosophila melanogaster , 2000, Genome Biology.

[6]  Brian Charlesworth,et al.  On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. , 2002, Molecular biology and evolution.

[7]  F. Müller,et al.  Tas, a retrotransposon from the parasitic nematode Ascaris lumbricoides. , 1994, Gene.

[8]  A. Flavell Molecular biology: Transposon tricks revealed , 1986, Nature.

[9]  Phillip SanMiguel,et al.  The paleontology of intergene retrotransposons of maize , 1998, Nature Genetics.

[10]  P. Barsanti,et al.  A survey of the DNA sequences surrounding the Bari1 repeats in the pericentromeric h39 region of Drosophila melanogaster. , 2003, Gene.

[11]  M. G. Kidwell,et al.  PERSPECTIVE: TRANSPOSABLE ELEMENTS, PARASITIC DNA, AND GENOME EVOLUTION , 2001, Evolution; international journal of organic evolution.

[12]  Gerald M Rubin,et al.  Heterochromatic sequences in a Drosophila whole-genome shotgun assembly , 2002, Genome Biology.

[13]  T. Eickbush,et al.  Origin and evolution of retroelements based upon their reverse transcriptase sequences. , 1990, The EMBO journal.

[14]  C. Vaury,et al.  The β heterochromatic sequences flanking the I elements are themselves defective transposable elements , 1989, Chromosoma.

[15]  Lilya V. Matyunina,et al.  Ltr retrotransposons and the evolution of eukaryotic enhancers , 2004, Genetica.

[16]  W. Bender,et al.  Sequences of the gypsy transposon of Drosophila necessary for its effects on adjacent genes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[18]  Alan M. Lambowitz,et al.  Mobile DNA III , 2002 .

[19]  C. Caggese,et al.  Bari-1, a new transposon-like family in Drosophila melanogaster with a unique heterochromatic organization. , 1993, Genetics.

[20]  J. McDonald Transposable elements, gene silencing and macroevolution. , 1998, Trends in ecology & evolution.

[21]  J. McDonald,et al.  Evolution and consequences of transposable elements. , 1993, Current opinion in genetics & development.

[22]  M. Ashburner,et al.  The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective , 2002, Genome Biology.

[23]  P. Capy Evolutionary biology: A plastic genome , 1998, Nature.

[24]  J. McDonald Reply from J.F. McDonald. , 1998, Trends in ecology & evolution.

[25]  N. Bowen,et al.  Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside. , 2001, Genome research.

[26]  V. Gvozdev,et al.  Heterochromatic Stellate gene cluster in Drosophila melanogaster: structure and molecular evolution. , 1997, Genetics.

[27]  Gary H Karpen,et al.  Sequence analysis of a functional Drosophila centromere. , 2003, Genome research.

[28]  A. Aravin,et al.  The GATE retrotransposon in Drosophila melanogaster: mobility in heterochromatin and aspects of its expression in germline tissues , 2003, Molecular Genetics and Genomics.

[29]  Jia Liu,et al.  Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. , 2003, Genetics.

[30]  Jef D Boeke,et al.  Molecular archeology of L1 insertions in the human genome , 2002, Genome Biology.

[31]  S. Eddy,et al.  Automated de novo identification of repeat sequence families in sequenced genomes. , 2002, Genome research.

[32]  C. Caggese,et al.  Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Boeke,et al.  An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. , 1994, Genes & development.

[34]  J. Bennetzen,et al.  Nested Retrotransposons in the Intergenic Regions of the Maize Genome , 1996, Science.

[35]  S. Covey Amino acid sequence homology in gag region of reverse transcribing elements and the coat protein gene of cauliflower mosaic virus. , 1986, Nucleic acids research.

[36]  D. Voytas,et al.  Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. , 1998, Genome research.

[37]  R. Hochstenbach,et al.  Degenerating gypsy retrotransposons in a male fertility gene on the Y chromosome of Drosophila hydei , 1994, Journal of Molecular Evolution.

[38]  N. Bowen,et al.  Genomic analysis of Caenorhabditis elegans reveals ancient families of retroviral-like elements. , 1999, Genome research.