MAX, a novel retrotransposon of the BEL-Pao family, is nested within the Bari 1 cluster at the heterochromatic h39 region of chromosome 2 in Drosophila melanogaster
暂无分享,去创建一个
P. Barsanti | P. Barsanti | C. Caggese | S. Marconi | R. M. Marsano | R. Moschetti | R. Caizzi | S. Marconi | R. Moschetti | C. Caggese | R. Caizzi
[1] S. Bonaccorsi,et al. Looking at Drosophila mitotic chromosomes. , 1994, Methods in cell biology.
[2] R. Britten,et al. DNA sequence insertion and evolutionary variation in gene regulation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[3] S. Henikoff,et al. Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. , 2000, Genome research.
[4] C. Walsh,et al. Cytosine methylation and the ecology of intragenomic parasites. , 1997, Trends in genetics : TIG.
[5] Eugene Berezikov,et al. A search for reverse transcriptase-coding sequences reveals new non-LTR retrotransposons in the genome of Drosophila melanogaster , 2000, Genome Biology.
[6] Brian Charlesworth,et al. On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. , 2002, Molecular biology and evolution.
[7] F. Müller,et al. Tas, a retrotransposon from the parasitic nematode Ascaris lumbricoides. , 1994, Gene.
[8] A. Flavell. Molecular biology: Transposon tricks revealed , 1986, Nature.
[9] Phillip SanMiguel,et al. The paleontology of intergene retrotransposons of maize , 1998, Nature Genetics.
[10] P. Barsanti,et al. A survey of the DNA sequences surrounding the Bari1 repeats in the pericentromeric h39 region of Drosophila melanogaster. , 2003, Gene.
[11] M. G. Kidwell,et al. PERSPECTIVE: TRANSPOSABLE ELEMENTS, PARASITIC DNA, AND GENOME EVOLUTION , 2001, Evolution; international journal of organic evolution.
[12] Gerald M Rubin,et al. Heterochromatic sequences in a Drosophila whole-genome shotgun assembly , 2002, Genome Biology.
[13] T. Eickbush,et al. Origin and evolution of retroelements based upon their reverse transcriptase sequences. , 1990, The EMBO journal.
[14] C. Vaury,et al. The β heterochromatic sequences flanking the I elements are themselves defective transposable elements , 1989, Chromosoma.
[15] Lilya V. Matyunina,et al. Ltr retrotransposons and the evolution of eukaryotic enhancers , 2004, Genetica.
[16] W. Bender,et al. Sequences of the gypsy transposon of Drosophila necessary for its effects on adjacent genes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.
[17] J. Thompson,et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.
[18] Alan M. Lambowitz,et al. Mobile DNA III , 2002 .
[19] C. Caggese,et al. Bari-1, a new transposon-like family in Drosophila melanogaster with a unique heterochromatic organization. , 1993, Genetics.
[20] J. McDonald. Transposable elements, gene silencing and macroevolution. , 1998, Trends in ecology & evolution.
[21] J. McDonald,et al. Evolution and consequences of transposable elements. , 1993, Current opinion in genetics & development.
[22] M. Ashburner,et al. The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective , 2002, Genome Biology.
[23] P. Capy. Evolutionary biology: A plastic genome , 1998, Nature.
[24] J. McDonald. Reply from J.F. McDonald. , 1998, Trends in ecology & evolution.
[25] N. Bowen,et al. Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside. , 2001, Genome research.
[26] V. Gvozdev,et al. Heterochromatic Stellate gene cluster in Drosophila melanogaster: structure and molecular evolution. , 1997, Genetics.
[27] Gary H Karpen,et al. Sequence analysis of a functional Drosophila centromere. , 2003, Genome research.
[28] A. Aravin,et al. The GATE retrotransposon in Drosophila melanogaster: mobility in heterochromatin and aspects of its expression in germline tissues , 2003, Molecular Genetics and Genomics.
[29] Jia Liu,et al. Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. , 2003, Genetics.
[30] Jef D Boeke,et al. Molecular archeology of L1 insertions in the human genome , 2002, Genome Biology.
[31] S. Eddy,et al. Automated de novo identification of repeat sequence families in sequenced genomes. , 2002, Genome research.
[32] C. Caggese,et al. Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. , 1995, Proceedings of the National Academy of Sciences of the United States of America.
[33] J. Boeke,et al. An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. , 1994, Genes & development.
[34] J. Bennetzen,et al. Nested Retrotransposons in the Intergenic Regions of the Maize Genome , 1996, Science.
[35] S. Covey. Amino acid sequence homology in gag region of reverse transcribing elements and the coat protein gene of cauliflower mosaic virus. , 1986, Nucleic acids research.
[36] D. Voytas,et al. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. , 1998, Genome research.
[37] R. Hochstenbach,et al. Degenerating gypsy retrotransposons in a male fertility gene on the Y chromosome of Drosophila hydei , 1994, Journal of Molecular Evolution.
[38] N. Bowen,et al. Genomic analysis of Caenorhabditis elegans reveals ancient families of retroviral-like elements. , 1999, Genome research.