Comparison between the Wiener index and the Zagreb indices and the eccentric connectivity index for trees
暂无分享,去创建一个
[1] H. Wiener. Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.
[2] B. Horoldagva,et al. On Comparing Zagreb Indices of Graphs , 2012 .
[3] A. K. Madan,et al. Application of Graph Theory: Relationship of Eccentric Connectivity Index and Wiener's Index with Anti-inflammatory Activity , 2002 .
[4] Roberto Todeschini,et al. Molecular descriptors for chemoinformatics , 2009 .
[5] Roberto Todeschini,et al. Handbook of Molecular Descriptors , 2002 .
[6] H. Hosoya. Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons , 1971 .
[7] Kinkar Chandra Das,et al. Maximizing the sum of the squares of the degrees of a graph , 2004, Discret. Math..
[8] Nenad Trinajstić,et al. On the discriminatory power of the Zagreb indices for molecular graphs , 2005 .
[9] Nenad Trinajstić,et al. Zagreb Indices: Extension to Weighted Graphs Representing Molecules Containing Heteroatoms* , 2007 .
[10] N. Trinajstic,et al. The Wiener Index: Development and Applications , 1995 .
[11] J. A. Bondy,et al. Graph Theory with Applications , 1978 .
[12] I. Gutman,et al. Wiener Index of Trees: Theory and Applications , 2001 .
[13] Kinkar Chandra Das,et al. Estimating the Szeged index , 2009, Appl. Math. Lett..
[14] Bo Zhou,et al. New upper bounds on Zagreb indices , 2009 .
[15] Hua Wang,et al. Corrigendum: The extremal values of the Wiener index of a tree with given degree sequence , 2007, Discret. Appl. Math..
[16] Kinkar Chandra Das,et al. Relationship between the eccentric connectivity index and Zagreb indices , 2011, Comput. Math. Appl..
[17] I. Gutman,et al. Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .
[18] N. Trinajstic,et al. The Zagreb Indices 30 Years After , 2003 .
[19] N. Trinajstic,et al. On use of the variable Zagreb vM2 index in QSPR: boiling points of benzenoid hydrocarbons. , 2004, Molecules.
[20] Bo Zhou,et al. Some properties of the reformulated Zagreb indices , 2010 .
[21] Simon Mukwembi,et al. On the eccentric connectivity index of a graph , 2011, Discret. Math..
[22] Kinkar Chandra Das,et al. The relationship between the eccentric connectivity index and Zagreb indices , 2013, Discret. Appl. Math..
[23] I. Gutman,et al. Eccentric Connectivity Index of Chemical Trees , 2011, 1104.3206.
[24] Kinkar Ch. Das,et al. Estimating the Wiener Index by Means of Number of Vertices, Number of Edges, and Diameter , 2010 .
[25] N. Trinajstic,et al. Comparison between first geometric–arithmetic index and atom-bond connectivity index , 2010 .
[26] N. Trinajstic,et al. On reformulated Zagreb indices , 2004, Molecular Diversity.
[27] Vipin Kumar,et al. Predicting anti-HIV activity of 2,3-diaryl-1,3-thiazolidin-4-ones: computational approach using reformed eccentric connectivity index , 2004, Journal of molecular modeling.
[28] I. Gutman,et al. Graph theory and molecular orbitals. XII. Acyclic polyenes , 1975 .
[29] N. Trinajstic,et al. Comparison Between Geometric-arithmetic Indices , 2012 .