Comparison between the Wiener index and the Zagreb indices and the eccentric connectivity index for trees

Abstract Molecular descriptors play an important role in mathematical chemistry, especially in the QSPR and QSAR modeling. Among them, a special place is reserved for the so called topological indices. Nowadays, there exists a legion of topological indices that found applications in various areas of chemistry Todeschini and Consonni (2000, 2009). Recently, we carried out comparison between several topological indices for various classes of graphs and trees (Das et al., 2012; Das and Trinajsti, 2010, 2011, 2012; Horoldagva and Das, 2012; Hua and Das, 2013). In this report, we compare the Wiener index and the Zagreb indices and the eccentric connectivity index for trees.

[1]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[2]  B. Horoldagva,et al.  On Comparing Zagreb Indices of Graphs , 2012 .

[3]  A. K. Madan,et al.  Application of Graph Theory: Relationship of Eccentric Connectivity Index and Wiener's Index with Anti-inflammatory Activity , 2002 .

[4]  Roberto Todeschini,et al.  Molecular descriptors for chemoinformatics , 2009 .

[5]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[6]  H. Hosoya Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons , 1971 .

[7]  Kinkar Chandra Das,et al.  Maximizing the sum of the squares of the degrees of a graph , 2004, Discret. Math..

[8]  Nenad Trinajstić,et al.  On the discriminatory power of the Zagreb indices for molecular graphs , 2005 .

[9]  Nenad Trinajstić,et al.  Zagreb Indices: Extension to Weighted Graphs Representing Molecules Containing Heteroatoms* , 2007 .

[10]  N. Trinajstic,et al.  The Wiener Index: Development and Applications , 1995 .

[11]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[12]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[13]  Kinkar Chandra Das,et al.  Estimating the Szeged index , 2009, Appl. Math. Lett..

[14]  Bo Zhou,et al.  New upper bounds on Zagreb indices , 2009 .

[15]  Hua Wang,et al.  Corrigendum: The extremal values of the Wiener index of a tree with given degree sequence , 2007, Discret. Appl. Math..

[16]  Kinkar Chandra Das,et al.  Relationship between the eccentric connectivity index and Zagreb indices , 2011, Comput. Math. Appl..

[17]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[18]  N. Trinajstic,et al.  The Zagreb Indices 30 Years After , 2003 .

[19]  N. Trinajstic,et al.  On use of the variable Zagreb vM2 index in QSPR: boiling points of benzenoid hydrocarbons. , 2004, Molecules.

[20]  Bo Zhou,et al.  Some properties of the reformulated Zagreb indices , 2010 .

[21]  Simon Mukwembi,et al.  On the eccentric connectivity index of a graph , 2011, Discret. Math..

[22]  Kinkar Chandra Das,et al.  The relationship between the eccentric connectivity index and Zagreb indices , 2013, Discret. Appl. Math..

[23]  I. Gutman,et al.  Eccentric Connectivity Index of Chemical Trees , 2011, 1104.3206.

[24]  Kinkar Ch. Das,et al.  Estimating the Wiener Index by Means of Number of Vertices, Number of Edges, and Diameter , 2010 .

[25]  N. Trinajstic,et al.  Comparison between first geometric–arithmetic index and atom-bond connectivity index , 2010 .

[26]  N. Trinajstic,et al.  On reformulated Zagreb indices , 2004, Molecular Diversity.

[27]  Vipin Kumar,et al.  Predicting anti-HIV activity of 2,3-diaryl-1,3-thiazolidin-4-ones: computational approach using reformed eccentric connectivity index , 2004, Journal of molecular modeling.

[28]  I. Gutman,et al.  Graph theory and molecular orbitals. XII. Acyclic polyenes , 1975 .

[29]  N. Trinajstic,et al.  Comparison Between Geometric-arithmetic Indices , 2012 .