MSDH: Matched subspace detector with heterogeneous noise

Abstract The matched subspace detector (MSD) is a classical subspace-based method for hyperspectral subpixel target detection. However, the model assumes that noise has the same variance over different bands, which is usually unrealistic in practice. In this letter, we relax the equal variance assumption and propose a matched subspace detector with heterogeneous noise (MSDH). In essence, the noise variances are different for different bands and they can be estimated by using iteratively reweighted least squares methods. Experiments on two benchmark real hyperspectral datasets demonstrate the superiority of MSDH over MSD for subpixel target detection.

[1]  John R. Schott,et al.  Performance comparison of hyperspectral target detection algorithms in altitude varying scenes , 2005 .

[2]  Bo-Cai Gao,et al.  An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers , 1993 .

[3]  Trac D. Tran,et al.  Sparse Representation for Target Detection in Hyperspectral Imagery , 2011, IEEE Journal of Selected Topics in Signal Processing.

[4]  Bo Du,et al.  A Sparse Representation-Based Binary Hypothesis Model for Target Detection in Hyperspectral Images , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[5]  José M. Bioucas-Dias,et al.  Hyperspectral Subspace Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Bo Du,et al.  Beyond the Sparsity-Based Target Detector: A Hybrid Sparsity and Statistics-Based Detector for Hyperspectral Images , 2016, IEEE Transactions on Image Processing.

[7]  Wojciech Czaja,et al.  The pre-image problem for Laplacian Eigenmaps utilizing L1 regularization with applications to data fusion , 2017 .

[8]  Chein-I Chang,et al.  Constrained subpixel target detection for remotely sensed imagery , 2000, IEEE Trans. Geosci. Remote. Sens..

[9]  Qian Du,et al.  Collaborative Representation for Hyperspectral Anomaly Detection , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Xuelong Li,et al.  Robust Visual Tracking Using Structurally Random Projection and Weighted Least Squares , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[11]  John F. Arnold,et al.  Reliably estimating the noise in AVIRIS hyperspectral images , 1996 .

[12]  Ziyu Wang,et al.  The matched subspace detector with interaction effects , 2017, Pattern Recognit..

[13]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[14]  Daniel R. Fuhrmann,et al.  A CFAR adaptive matched filter detector , 1992 .

[15]  John P. Kerekes,et al.  Development of a Web-Based Application to Evaluate Target Finding Algorithms , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[16]  Heesung Kwon,et al.  Kernel Spectral Matched Filter for Hyperspectral Imagery , 2007, International Journal of Computer Vision.

[17]  Paul E. Johnson,et al.  Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis , 1985 .

[18]  Ziyu Wang,et al.  Matched shrunken subspace detectors for hyperspectral target detection , 2018, Neurocomputing.

[19]  Paul D. Gader,et al.  A Gaussian Mixture Model Representation of Endmember Variability in Hyperspectral Unmixing , 2017, IEEE Transactions on Image Processing.

[20]  Ziyu Wang,et al.  Matched Shrunken Cone Detector (MSCD): Bayesian Derivations and Case Studies for Hyperspectral Target Detection , 2017, IEEE Transactions on Image Processing.

[21]  Qian Du,et al.  A Comparative Study on Linear Regression-Based Noise Estimation for Hyperspectral Imagery , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[22]  Bo Du,et al.  Target Detection Based on Random Forest Metric Learning , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[23]  Gary A. Shaw,et al.  Hyperspectral Image Processing for Automatic Target Detection Applications , 2003 .

[24]  Bo Du,et al.  A Low-Rank and Sparse Matrix Decomposition-Based Mahalanobis Distance Method for Hyperspectral Anomaly Detection , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Bo Du,et al.  Target detection based on a dynamic subspace , 2014, Pattern Recognit..

[26]  Gary A. Shaw,et al.  Adaptive matched subspace detectors for hyperspectral imaging applications , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[27]  Bea Thai,et al.  Invariant subpixel target identification in hyperspectral imagery , 1999, Defense, Security, and Sensing.

[28]  Rama Chellappa,et al.  Hybrid Detectors for Subpixel Targets , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Heesung Kwon,et al.  Kernel matched subspace detectors for hyperspectral target detection , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Timothy J. Robinson,et al.  Linear Models With R , 2005, Technometrics.

[31]  Yuval Cohen,et al.  Subpixel hyperspectral target detection using local spectral and spatial information , 2012 .

[32]  Gozde Bozdagi Akar,et al.  EndNet: Sparse AutoEncoder Network for Endmember Extraction and Hyperspectral Unmixing , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Jocelyn Chanussot,et al.  Noise Reduction in Hyperspectral Imagery: Overview and Application , 2018, Remote. Sens..

[34]  E. J. Kelly An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[35]  Jiwen Lu,et al.  Discriminative Deep Metric Learning for Face and Kinship Verification , 2017, IEEE Transactions on Image Processing.

[36]  Jiwen Lu,et al.  Sharable and Individual Multi-View Metric Learning , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Ruixing Li,et al.  Improving hyperspectral subpixel target detection using hybrid detection space , 2018 .

[38]  Bo Du,et al.  Hyperspectral Remote Sensing Image Subpixel Target Detection Based on Supervised Metric Learning , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Changzhe Jiao,et al.  Discriminative Multiple Instance Hyperspectral Target Characterization , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Bo Du,et al.  Multitask Learning-Based Reliability Analysis for Hyperspectral Target Detection , 2019, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[41]  Wayne A. Fuller,et al.  Predicting objective physical activity from self-report surveys: a model validation study using estimated generalized least-squares regression , 2015 .