Ground states of unfrustrated spin Hamiltonians satisfy an area law

We show that ground states of unfrustrated quantum spin-1/2 systems on general lattices satisfy an entanglement area law, provided that the Hamiltonian can be decomposed into nearest-neighbor interaction terms that have entangled excited states. The ground state manifold can be efficiently described as the image of a low-dimensional subspace of low Schmidt measure, under an efficiently contractible tree-tensor network. This structure gives rise to the possibility of efficiently simulating the complete ground space (which is in general degenerate). We briefly discuss 'non-generic' cases, including highly degenerate interactions with product eigenbases, using a relationship to percolation theory. We finally assess the possibility of using such tree tensor networks to simulate almost frustration-free spin models.

[1]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[2]  John E. Hopcroft,et al.  Complexity of Computer Computations , 1974, IFIP Congress.

[3]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..

[4]  B. Shastry,et al.  Exact ground state of a quantum mechanical antiferromagnet , 1981 .

[5]  H. Poincaré,et al.  Percolation ? , 1982 .

[6]  Lee,et al.  Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.

[7]  Andreas Schadschneider,et al.  Groundstate properties of a generalized VBS-model , 1992 .

[8]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[9]  F. Wilczek,et al.  Geometric and renormalized entropy in conformal field theory , 1994, hep-th/9403108.

[10]  J. Eisert,et al.  Schmidt measure as a tool for quantifying multiparticle entanglement , 2000, quant-ph/0007081.

[11]  K. Audenaert,et al.  Entanglement properties of the harmonic chain , 2002, quant-ph/0205025.

[12]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[13]  Vladimir E. Korepin,et al.  Quantum Spin Chain, Toeplitz Determinants and the Fisher—Hartwig Conjecture , 2004 .

[14]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[15]  J Eisert,et al.  Entropy, entanglement, and area: analytical results for harmonic lattice systems. , 2005, Physical review letters.

[16]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[17]  J. Eisert,et al.  Correlations, spectral gap and entanglement in harmonic quantum systems on generic lattices , 2005, quant-ph/0509167.

[18]  Michael M Wolf Violation of the entropic area law for fermions. , 2006, Physical review letters.

[19]  Dimitri Gioev,et al.  Entanglement entropy of fermions in any dimension and the Widom conjecture. , 2006, Physical review letters.

[20]  The Power of Quantum Systems on a Line , 2007, 0705.4077.

[21]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[22]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[23]  J. Eisert,et al.  Percolation in quantum computation and communication , 2007, 0712.1836.

[24]  Statistics dependence of the entanglement entropy. , 2006, Physical review letters.

[25]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[26]  R. Rossignoli,et al.  Factorization and entanglement in general XYZ spin arrays in nonuniform transverse fields , 2009, 0910.0300.

[27]  Lluis Masanes,et al.  Area law for the entropy of low-energy states , 2009, 0907.4672.

[28]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[29]  J Eisert,et al.  Solving frustration-free spin systems. , 2010, Physical review letters.