A method of determining narrow energy spread electron beams from a laser plasma wakefield accelerator using undulator radiation

In this paper a new method of determining the energy spread of a relativistic electron beam from a laser-driven plasma wakefield accelerator by measuring radiation from an undulator is presented. This could be used to determine the beam characteristics of multi-GeV accelerators where conventional spectrometers are very large and cumbersome. Simultaneous measurement of the energy spectra of electrons from the wakefield accelerator in the 55–70 MeV range and the radiation spectra in the wavelength range of 700–900 nm of synchrotron radiation emitted from a 50 period undulator confirm a narrow energy spread for electrons accelerated over the dephasing distance where beam loading leads to energy compression. Measured energy spreads of less than 1% indicates the potential of using a wakefield accelerator as a driver of future compact and brilliant ultrashort pulse synchrotron sources and free-electron lasers that require high peak brightness beams.

[1]  M. Mostafavi,et al.  Absolute calibration for a broad range single shot electron spectrometer , 2006 .

[2]  T. Katsouleas,et al.  Studies of classical radiation emission from plasma wave undulators , 1993 .

[3]  M. Ferrario,et al.  Design considerations for table-top, laser-based VUV and X-ray free electron lasers , 2007 .

[4]  Sebastian M. Pfotenhauer,et al.  A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator , 2008 .

[5]  Claudio Pellegrini,et al.  Collective instabilities and high-gain regime in a free electron laser , 1984 .

[6]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[7]  K. Holldack,et al.  Femtosecond undulator radiation from sliced electron bunches. , 2006, Physical review letters.

[8]  J. D. Lawson,et al.  The physics of charged-particle beams , 1988 .

[9]  Wei Lu,et al.  Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator , 2007, Nature.

[10]  M. R. Islam,et al.  Narrow spread electron beams from a laser-plasma wakefield accelerator , 2009, Optics + Optoelectronics.

[11]  V. Malka,et al.  Laser-driven accelerators by colliding pulses injection: A review of simulation and experimental results , 2009 .

[12]  Ursula van Rienen,et al.  3D Space-charge model for GPT simulations of high-brightness electron bunches , 2003 .

[13]  C. Wahlström,et al.  Laser-wakefield acceleration of monoenergetic electron beams in the first plasma-wave period. , 2006, Physical review letters.

[14]  Energy spread in plasma-based acceleration , 2000 .

[15]  Thomas C. Katsouleas,et al.  Plasma wave wigglers for free-electron lasers , 1987 .

[16]  Tsumoru Shintake,et al.  Status of SPring-8 compact SASE source FEL project , 2003 .

[17]  D. Habs,et al.  Few-cycle laser-driven electron acceleration. , 2009, Physical review letters.

[18]  H. Schwoerer,et al.  Synchrotron Radiation From Laser-Accelerated Monoenergetic Electrons , 2008, IEEE Transactions on Plasma Science.

[19]  E. Weckert,et al.  Review of third and next generation synchrotron light sources , 2005 .

[20]  T. Katsouleas Accelerator physics: Electrons hang ten on laser wake , 2004, Nature.

[21]  D. Jaroszynski,et al.  Generation of quasimonoenergetic electron bunches with 80-fs laser pulses. , 2006, Physical review letters.

[22]  R Bingham,et al.  Efficiency and energy spread in laser-wakefield acceleration. , 2005, Physical review letters.

[23]  Eric Esarey,et al.  Overview of plasma-based accelerator concepts , 1996 .

[24]  Teruyoshi Takahashi,et al.  Calibration of imaging plate for high energy electron spectrometer , 2005 .

[25]  H. Kitamura,et al.  SPECTRA: a synchrotron radiation calculation code. , 2001, Journal of synchrotron radiation.

[26]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[27]  Klaus Sokolowski-Tinten,et al.  Ultrafast phase transitions and lattice dynamics probed using laser-produced x-ray pulses , 2004 .

[28]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[29]  Bob Nagler,et al.  GeV electron beams from a centimeter-scale channel guided laser wakefield acceleratora) , 2007 .

[30]  V Malka,et al.  Emittance measurements of a laser-wakefield-accelerated electron beam. , 2004, Physical review letters.

[31]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[32]  Gerard Mourou,et al.  Generation of ultrahigh peak power pulses by chirped pulse amplification , 1988 .

[33]  M. Tzoufras,et al.  Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime , 2007 .

[34]  J. Arthur,et al.  X-ray free-electron lasers , 2005 .

[35]  J. Meyer-ter-Vehn,et al.  Laser wake field acceleration: the highly non-linear broken-wave regime , 2002 .

[36]  Paolo Luchini,et al.  Undulators and Free-Electron Lasers , 1990 .

[37]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[38]  Ming Xie,et al.  Exact and variational solutions of 3D Eigenmodes in high gain FELs , 1999 .

[39]  R Issac,et al.  Radiation sources based on laser–plasma interactions , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  Christian Gutt,et al.  XPCS at the European X-ray free electron laser facility , 2007 .

[41]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[42]  D. Attwood Soft X-Rays and Extreme Ultraviolet Radiation , 1999 .