A lattice filter model of the visual pathway

Early stages of visual processing are thought to decorrelate, or whiten, the incoming temporally varying signals. Motivated by the cascade structure of the visual pathway (retina → lateral geniculate nucelus (LGN) → primary visual cortex, V1) we propose to model its function using lattice filters - signal processing devices for stage-wise decorrelation of temporal signals. Lattice filter models predict neuronal responses consistent with physiological recordings in cats and primates. In particular, they predict temporal receptive fields of two different types resembling so-called lagged and non-lagged cells in the LGN. Moreover, connection weights in the lattice filter can be learned using Hebbian rules in a stage-wise sequential manner reminiscent of the neuro-developmental sequence in mammals. In addition, lattice filters can model visual processing in insects. Therefore, lattice filter is a useful abstraction that captures temporal aspects of visual processing.

[1]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[2]  E F MACNICHOL,et al.  The peripheral origin of nervous activity in the visual system. , 1952, Cold Spring Harbor symposia on quantitative biology.

[3]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[4]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[5]  A. L. Humphrey,et al.  Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. , 1990, Journal of neurophysiology.

[6]  Robert M. Gray,et al.  Linear Predictive Coding and the Internet Protocol , 2010 .

[7]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[8]  Ali H. Sayed,et al.  Fundamentals Of Adaptive Filtering , 2003 .

[9]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[10]  Louis K. Scheffer,et al.  Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain. , 2011, Current biology : CB.

[11]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[12]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[13]  Hanoch Lev-Ari,et al.  Adaptive Laguerre-lattice filters , 1997, IEEE Trans. Signal Process..

[14]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[15]  J. Alonso,et al.  Faster Thalamocortical Processing for Dark than Light Visual Targets , 2011, The Journal of Neuroscience.

[16]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[17]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells. , 1987, Journal of neurophysiology.

[18]  T. Sejnowski,et al.  Natural patterns of activity and long-term synaptic plasticity , 2000, Current Opinion in Neurobiology.

[19]  S. Laughlin Matching coding, circuits, cells, and molecules to signals: General principles of retinal design in the fly's eye , 1994, Progress in Retinal and Eye Research.

[20]  P. Heggelund,et al.  Neurotransmitter receptors mediating excitatory input to cells in the cat lateral geniculate nucleus. I. Lagged cells. , 1990, Journal of neurophysiology.

[21]  J. Alonso,et al.  Adaptation to Stimulus Contrast and Correlations during Natural Visual Stimulation , 2007, Neuron.

[22]  Damon A. Clark,et al.  Defining the Computational Structure of the Motion Detector in Drosophila , 2011, Neuron.

[23]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. , 1987, Journal of neurophysiology.

[24]  Xin Wang,et al.  Recoding of Sensory Information across the Retinothalamic Synapse , 2010, The Journal of Neuroscience.

[25]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[26]  L. Palmer,et al.  Temporal diversity in the lateral geniculate nucleus of cat , 1998, Visual Neuroscience.

[27]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[28]  S B Laughlin,et al.  Synaptic limitations to contrast coding in the retina of the blowfly Calliphora , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[29]  J. Atick,et al.  STATISTICS OF NATURAL TIME-VARYING IMAGES , 1995 .

[30]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[31]  Alexander Borst,et al.  ON and OFF pathways in Drosophila motion vision , 2010, Nature.

[32]  G. DeAngelis,et al.  Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. , 1997, Journal of neurophysiology.

[33]  Xin Wang,et al.  Inhibitory circuits for visual processing in thalamus , 2011, Current Opinion in Neurobiology.

[34]  S. Thomas Alexander,et al.  Adaptive Signal Processing , 1986, Texts and Monographs in Computer Science.

[35]  Alan B Saul,et al.  Lagged cells in alert monkey lateral geniculate nucleus , 2008, Visual Neuroscience.

[36]  M. Meister,et al.  Dynamic predictive coding by the retina , 2005, Nature.