Algal transgenics and biotechnology

Transgenesis in algae is a complex and fast-growing technology. Selectable marker genes, promoters, reporter genes, transformation techniques, and other genetic tools and methods are already available for various species and currently ~25 species are accessible to genetic transformation. Fortunately, large-scale sequencing projects are also planned, in progress, or completed for several of these species; the most advanced genome projects are those for the red alga Cyanidioschyzon merolae, the diatom Thalassiosira pseudonana, and the three green algae Chlamydomonas reinhardtii, Volvox carteri and Ostreococcus tauri. The vast amount of genomic and EST data coming from these and a number of other algae has the potential to dramatically enlarge not only the algae’s molecular toolbox. A powerful driving force in algal transgenics is the prospect of using genetically modified algae as bioreactors. In general, today’s non-transgenic, commercial algal biotechnology produces food additives, cosmetics, animal feed additives, pigments, polysaccharides, fatty acids, and biomass. But recent progress in algal transgenics promises a much broader field of application: molecular farming, the production of proteins or metabolites that are valuable to medicine or industry, seems to be feasible with transgenic algal systems. Indeed, the ability of transgenic algae to produce recombinant antibodies, vaccines, insecticidal proteins, or bio-hydrogen has already been demonstrated. Genetic modifications that enhance physiological properties of algal strains and optimization of algal production systems should further improve the potential of this auspicious technology in the future.

[1]  B. Read,et al.  Analysis of Expressed Sequence Tags from Calcifying Cells of Marine Coccolithophorid (Emiliania huxleyi) , 2004, Marine Biotechnology.

[2]  Nicole Poulsen,et al.  A new molecular tool for transgenic diatoms: control of mRNA and protein biosynthesis by an inducible promoter-terminator cassette. , 2005, The FEBS journal.

[3]  A. Grossman,et al.  Stable nuclear transformation of the diatomPhaeodactylum tricornutum , 1996, Molecular and General Genetics MGG.

[4]  Peter Berthold,et al.  An engineered Streptomyces hygroscopicus aph 7" gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. , 2002, Protist.

[5]  Otto Pulz,et al.  Photobioreactors: Design and performance with respect to light energy input , 1998 .

[6]  S. Qin,et al.  Expression of the lacZ reporter gene in sporophytes of the seaweed Laminaria japonica (Phaeophyceae) by gametophyte-targeted transformation , 2003, Plant Cell Reports.

[7]  M. Ragan,et al.  Expressed sequence tags (ESTs) from the marine red alga Gracilaria gracilis , 2004, Journal of Applied Phycology.

[8]  L. Chuang,et al.  (Biochem. J., 384:357-366)Identification of two novel microalgal enzymes involved in the conversion of the ω3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid , 2004 .

[9]  Peng Wang,et al.  Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta) , 2003, Journal of Applied Phycology.

[10]  A. Falciatore,et al.  Transformation of Nonselectable Reporter Genes in Marine Diatoms , 1999, Marine Biotechnology.

[11]  P. Hegemann,et al.  A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. , 1999, The Plant journal : for cell and molecular biology.

[12]  N. Pauw,et al.  The potential of microalgal biotechnology: A review of production and uses of microalgae , 1988 .

[13]  O. Pulz,et al.  Valuable products from biotechnology of microalgae , 2004, Applied Microbiology and Biotechnology.

[14]  M. Schroda,et al.  The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. , 2000, The Plant journal : for cell and molecular biology.

[15]  Miguel Olaizola,et al.  Commercial development of microalgal biotechnology: from the test tube to the marketplace. , 2003, Biomolecular engineering.

[16]  E. Jarvis,et al.  GENETIC TRANSFORMATION OF THE DIATOMS CYCLOTELLA CRYPTICA AND NAVICULA SAPROPHILA , 1995 .

[17]  A. Grossman,et al.  Trophic Conversion of an Obligate Photoautotrophic Organism Through Metabolic Engineering , 2001, Science.

[18]  D. Weeks,et al.  Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. , 2002, The Plant journal : for cell and molecular biology.

[19]  M. M. Rebolloso-Fuentes,et al.  Eicosapentaenoic and arachidonic acids purification from the red microalga Porphyridium cruentum , 2000, Bioseparation.

[20]  Y. Nakamura,et al.  Generation of 10,154 expressed sequence tags from a leafy gametophyte of a marine red alga, Porphyra yezoensis. , 2000, DNA research : an international journal for rapid publication of reports on genes and genomes.

[21]  G. Jensen,et al.  Blue-Green Algae as an Immuno-Enhancer and Biomodulator , 2001 .

[22]  E. Grotewold,et al.  Comparison of ESTs from juvenile and adult phases of the giant unicellular green alga Acetabularia acetabulum , 2004, BMC Plant Biology.

[23]  I. E. Huertas,et al.  Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments , 2000, Journal of Applied Phycology.

[24]  Song Qin,et al.  Establishment of a micro-particle bombardment transformation system for Dunaliella salina. , 2005, Journal of microbiology.

[25]  Nicolas Carels,et al.  Genome Properties of the Diatom Phaeodactylum tricornutum 212 , 2002, Plant Physiology.

[26]  Haroon S. Kheshgi,et al.  The Photobiological Production of Hydrogen: Potential Efficiency and Effectiveness as a Renewable Fuel , 2005, Critical reviews in microbiology.

[27]  P. Dale Public reactions and scientific responses to transgenic crops. , 1999, Current opinion in biotechnology.

[28]  J. Steinbrenner,et al.  Transformation of the Green Alga Haematococcus pluvialis with a Phytoene Desaturase for Accelerated Astaxanthin Biosynthesis , 2006, Applied and Environmental Microbiology.

[29]  O. Pulz,et al.  Photobioreactors: production systems for phototrophic microorganisms , 2001, Applied Microbiology and Biotechnology.

[30]  A. Grossman,et al.  Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes , 2000 .

[31]  J. Rochaix,et al.  The bacterial phleomycin resistance gene , 1996 .

[32]  H. Cerutti,et al.  A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: integration into the nuclear genome and gene expression. , 1997, Genetics.

[33]  C. Delwiche,et al.  Dinoflagellate expressed sequence tag data indicate massive transfer of chloroplast genes to the nuclear genome. , 2004, Protist.

[34]  S. Purton,et al.  ALGAL TRANSGENICS IN THE GENOMIC ERA 1 , 2005 .

[35]  A. Frosini,et al.  Bioactivity in free-living and symbiotic cyanobacteria of the genus Nostoc , 2000, Journal of Applied Phycology.

[36]  A. Vioque Transformation of cyanobacteria. , 2007, Advances in experimental medicine and biology.

[37]  A. Melis,et al.  Hydrogen production. Green algae as a source of energy. , 2001, Plant physiology.

[38]  A. Hallmann,et al.  Genetic engineering of the multicellular green alga Volvox: a modified and multiplied bacterial antibiotic resistance gene as a dominant selectable marker. , 1999, The Plant journal : for cell and molecular biology.

[39]  P. Spolaore,et al.  Commercial applications of microalgae. , 2006, Journal of bioscience and bioengineering.

[40]  H. Claustre,et al.  Smallest eukaryotic organism , 1994, Nature.

[41]  G. McFadden,et al.  Jam packed genomes – a preliminary, comparative analysis of nucleomorphs , 2002, Genetica.

[42]  H. Poo,et al.  Transformation of a filamentous cyanobacterium by electroporation , 1989, Journal of bacteriology.

[43]  S. Ball Eukaryotic Microalgae Genomics. The Essence of Being a Plant , 2005, Plant Physiology.

[44]  Olaf Kruse,et al.  Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies , 2005, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[45]  R. Schmitt,et al.  The bacterial paromomycin resistance gene, aphH, as a dominant selectable marker in Volvox carteri. , 2004, Protist.

[46]  K. Kawaguchi,et al.  Microalgae production systems in Asia , 1980 .

[47]  Peter Hegemann,et al.  Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene , 2004, Plant Molecular Biology.

[48]  David J. Miller,et al.  Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): expression of GUS in microalgae using heterologous promoter constructs , 1998 .

[49]  Huiyun Chang,et al.  Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast , 2003, Biotechnology Letters.

[50]  T. Dunahay,et al.  Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. , 1993, BioTechniques.

[51]  M. El-sheekh Stable Transformation of the Intact Cells of Chlorella Kessleri with High Velocity Microprojectiles , 1999, Biologia Plantarum.

[52]  Zhengkai Xu,et al.  Functional complementation of a nitrate reductase defective mutant of a green alga Dunaliella viridis by introducing the nitrate reductase gene. , 2006, Gene.

[53]  A. Weber,et al.  Comparative Genomics of Two Closely Related Unicellular Thermo-Acidophilic Red Algae, Galdieria sulphuraria and Cyanidioschyzon merolae, Reveals the Molecular Basis of the Metabolic Flexibility of Galdieria sulphuraria and Significant Differences in Carbohydrate Metabolism of Both Algae1 , 2005, Plant Physiology.

[54]  T. Kuroiwa,et al.  Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. , 2004, Plant & cell physiology.

[55]  M. Soares,et al.  Migration of the Plastid Genome to the Nucleus in a Peridinin Dinoflagellate , 2004, Current Biology.

[56]  D. Borovsky Trypsin-modulating oostatic factor: a potential new larvicide for mosquito control , 2003, Journal of Experimental Biology.

[57]  Masahiko Morita,et al.  Photosynthetic productivity of conical helical tubular photobioreactor incorporating Chlorella sorokiniana under field conditions. , 2002, Biotechnology and bioengineering.

[58]  B. Schoefs,et al.  Microalgae as a source for secondary carotenoid production : a screening study , 2000 .

[59]  A. Grossman,et al.  Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii. , 1992, Nucleic acids research.

[60]  A. Hallmann,et al.  The Chlorella hexose/H+ symporter is a useful selectable marker and biochemical reagent when expressed in Volvox. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Song Qin,et al.  Transforming kelp into a marine bioreactor. , 2005, Trends in biotechnology.

[62]  V. Lumbreras,et al.  Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron , 1998 .

[63]  K. Chow,et al.  Electrotransformation of Chlorella vulgaris , 1999, Plant Cell Reports.

[64]  A. Weber,et al.  EST-analysis of the thermo-acidophilic red microalga Galdieriasulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts , 2004, Plant Molecular Biology.

[65]  P. Keeling,et al.  Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[66]  O. Koksharova,et al.  Genetic tools for cyanobacteria , 2001, Applied Microbiology and Biotechnology.

[67]  A. Hallmann,et al.  Reporter genes and highly regulated promoters as tools for transformation experiments in Volvox carteri. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[68]  O. Skulberg Microalgae as a source of bioactive molecules – experience from cyanophyte research , 2000, Journal of Applied Phycology.

[69]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[70]  Lu Zhang,et al.  Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. , 2000, Plant physiology.

[71]  S. Mayfield,et al.  Prospects for molecular farming in the green alga Chlamydomonas. , 2004, Current opinion in plant biology.

[72]  B. De Baets,et al.  Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[73]  C. Bowler,et al.  Diatomics: toward diatom functional genomics. , 2005, Journal of nanoscience and nanotechnology.

[74]  M. Borowitzka Commercial production of microalgae: ponds, tanks, tubes and fermenters , 1999 .

[75]  Lewis M. Brown,et al.  Transient expression of firefly luciferase in protoplasts of the green alga Chlorella ellipsoidea , 1991, Current Genetics.

[76]  V. S. Reddy,et al.  Genetic transformation of the green alga: Chlamydomonas reinhardtii by Agrobacterium tumefaciens , 2004 .

[77]  M. Toyomizu,et al.  Transformation of Spirulina platensis Strain C1 (Arthrospira sp. PCC9438) with Tn5 Transposase–Transposon DNA–Cation Liposome Complex , 2004, Marine Biotechnology.

[78]  C. Ho,et al.  Trends in seaweed research. , 2006, Trends in plant science.

[79]  A. Grossman Paths toward Algal Genomics , 2005, Plant Physiology.

[80]  R. Burlingame,et al.  Stable Transformation of Chlorella: Rescue of Nitrate Reductase-Deficient Mutants with the Nitrate Reductase Gene , 1997, Current Microbiology.

[81]  Michal Shapira,et al.  Stable Chloroplast Transformation of the Unicellular Red AlgaPorphyridium Species1 , 2002, Plant Physiology.

[82]  Jeff Shrager,et al.  Chlamydomonas reinhardtii Genome Project. A Guide to the Generation and Use of the cDNA Information1 , 2003, Plant Physiology.

[83]  Grecia R. Matos,et al.  Historical Statistics for Mineral and Material Commodities in the United States , 2005 .

[84]  S. Purton,et al.  Microalgae as bioreactors , 2005, Plant Cell Reports.

[85]  M. Sumper,et al.  Evidence for Autocatalytic Cross-Linking of Hydroxyproline-Rich Glycoproteins during Extracellular Matrix Assembly in Volvox Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.000711. , 2002, The Plant Cell Online.

[86]  A. Grossman,et al.  Stable nuclear transformation of the diatom , 1996 .

[87]  W. Müller,et al.  Nuclear transformation of Volvox carteri. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Hervé Moreau,et al.  DNA LIBRARIES FOR SEQUENCING THE GENOME OF OSTREOCOCCUS TAURI (CHLOROPHYTA, PRASINOPHYCEAE): THE SMALLEST FREE‐LIVING EUKARYOTIC CELL 1 , 2002 .

[89]  Richard T. Sayre,et al.  Molecular Mechanisms of Proline-Mediated Tolerance to Toxic Heavy Metals in Transgenic Microalgae , 2002, The Plant Cell Online.

[90]  P. Lefebvre,et al.  Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase , 1989, The Journal of cell biology.

[91]  Wolfgang Becker,et al.  Microalgae in human and animal nutrition. , 2007 .

[92]  L. Bogorad,et al.  Stable transformation of the cyanobacterium Synechocystis sp. PCC 6803 induced by UV irradiation , 1986, Journal of bacteriology.

[93]  A. Mathieson,et al.  Transient Expression of the GUS Reporter Gene in the Protoplasts and Partially Digested Cells of Ulva lactuca L. (Chlorophyta) , 1996 .

[94]  J. V. Van Etten,et al.  Phycodnaviridae– large DNA algal viruses , 2002, Archives of Virology.

[95]  S. Arcioni,et al.  Agrobacterium-Mediated Genetic Transformation of Alfalfa , 2008 .

[96]  W. Becker Microalgae for aquaculture: the nutritional value of microalgae for aquaculture. , 2007 .

[97]  M. Vincenzini,et al.  Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review , 2001, Journal of Applied Phycology.

[98]  Michael A. Borowitzka,et al.  Microalgae as sources of pharmaceuticals and other biologically active compounds , 1995, Journal of Applied Phycology.

[99]  J. Rochaix,et al.  The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii , 2001, Molecular Genetics and Genomics.

[100]  Chris Bowler,et al.  Revealing the molecular secrets of marine diatoms. , 2002, Annual review of plant biology.

[101]  Harald Fischer,et al.  TARGETING AND COVALENT MODIFICATION OF CELL WALL AND MEMBRANE PROTEINS HETEROLOGOUSLY EXPRESSED IN THE DIATOM CYLINDROTHECA FUSIFORMIS (BACILLARIOPHYCEAE) , 1999 .

[102]  K. Kindle High-frequency nuclear transformation of Chlamydomonas reinhardtii. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Michael D. Thompson,et al.  Chloroplast transformation in Euglena gracilis: splicing of a group III twintron transcribed from a transgenic psbK operon , 2001, Current Genetics.

[104]  S. Phang,et al.  Transient expression of lacZ in particle bombarded Gracilaria changii (Gracilariales, Rhodophyta) , 2003, Journal of Applied Phycology.

[105]  H. Cerutti,et al.  Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. , 2000, Science.

[106]  J. Rochaix,et al.  The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. , 1989, The EMBO journal.

[107]  Jeff Shrager,et al.  Chlamydomonas reinhardtii at the Crossroads of Genomics , 2003, Eukaryotic Cell.

[108]  Miguel Olaizola,et al.  Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors , 2000, Journal of Applied Phycology.

[109]  Phillip R. Moyle,et al.  Chapter E: History and Overview of the U.S. Diatomite Mining Industry, with Emphasis on the Western United States , 2003 .

[110]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[111]  Richard A Lerner,et al.  Expression and assembly of a fully active antibody in algae , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[112]  C. Boyen,et al.  Characterisation of complementary DNAs from the expressed sequence tag analysis of life cycle stages of Laminaria digitata (Phaeophyceae) , 2000, Plant Molecular Biology.

[113]  P. Hegemann,et al.  A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. , 2001, Gene.

[114]  Nicole Poulsen,et al.  A new molecular tool for transgenic diatoms , 2005 .

[115]  A. Falciatore,et al.  Perception of environmental signals by a marine diatom. , 2000, Science.

[116]  Z. Liming,et al.  Construction of a System for the Stable Expression of Foreign Genes in Dunaliella salina , 2004 .

[117]  Hiroyuki Noda,et al.  The main seaweed foods in Japan , 1987 .

[118]  Fumiko Ohta,et al.  Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D , 2004, Nature.

[119]  Swapped green algal promoters: aphVIII-based gene constructs with Chlamydomonas flanking sequences work as dominant selectable markers in Volvox and vice versa , 2006, Plant Cell Reports.

[120]  P. Lefebvre,et al.  The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation , 1994, Molecular and cellular biology.

[121]  E. H. Harris,et al.  Isolation and characterization of a mutant protoporphyrinogen oxidase gene from Chlamydomonas reinhardtii conferring resistance to porphyric herbicides , 1998, Plant Molecular Biology.

[122]  L E Brown,et al.  Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation , 1991, Molecular and cellular biology.