Plankton Planet: A frugal, cooperative measure of aquatic life at the planetary scale

In every liter of seawater there are between 10 and 100 billion life forms, mostly invisible, called marine plankton or marine microbiome, which form the largest and most dynamic ecosystem on our planet, at the heart of global ecological and economic processes. While physical and chemical parameters of planktonic ecosystems are fairly well measured and modeled at the planetary scale, biological data are still scarce due to the extreme cost and relative inflexibility of the classical vessels and instruments used to explore marine biodiversity. Here we introduce ‘Plankton Planet’, an initiative whose goal is to engage the curiosity and creativity of researchers, makers, and mariners to (i) co-develop a new generation of cost-effective (frugal) universal scientific instrumentation to measure the genetic and morphological diversity of marine microbiomes in context, (ii) organize their systematic deployment through coastal or open ocean communities of sea-users/farers, to generate uniform plankton data across global and long-term spatio-temporal scales, and (iii) setup tools to flow the data without embargo into public and explorable databases. As proof-of-concept, we show how 20 crews of sailors were able to sample plankton biomass from the world surface ocean in a single year, generating the first seatizen-based, planetary dataset of marine plankton biodiversity based on DNA barcodes. The quality of this dataset is comparable to that generated by Tara Oceans and is not biased by the multiplication of samplers. The data unveil significant genetic novelty and can be used to explore the taxonomic and ecological diversity of plankton at both regional and global scales. This pilot project paves the way for construction of a miniaturized, modular, evolvable, affordable and open-source citizen field-platform that will allow systematic assessment of the eco/morpho/genetic variation of aquatic ecosystems and microbiomes across the dimensions of the Earth system.

[1]  M. Prakash,et al.  PlanktoScope: Affordable Modular Quantitative Imaging Platform for Citizen Oceanography , 2022, Frontiers in Marine Science.

[2]  M. Prakash,et al.  Basin-Scale Underway Quantitative Survey of Surface Microplankton Using Affordable Collection and Imaging Tools Deployed From Tara , 2022, Frontiers in Marine Science.

[3]  G. Cochrane,et al.  Cryptic and abundant marine viruses at the evolutionary origins of Earth’s RNA virome , 2022, Science.

[4]  D. Roberts,et al.  The Ocean and Cryosphere in a Changing Climate , 2022 .

[5]  H. Sarmento,et al.  Environmental vulnerability of the global ocean epipelagic plankton community interactome , 2021, Science advances.

[6]  X. Pochon,et al.  A Portable Cruising Speed Net: Expanding Global Collection of Sea Surface Plankton Data , 2020, Frontiers in Marine Science.

[7]  G. Cochrane,et al.  Tara Oceans: towards global ocean ecosystems biology , 2020, Nature Reviews Microbiology.

[8]  D. Siegel,et al.  Metrics that matter for assessing the ocean biological carbon pump , 2020, Proceedings of the National Academy of Sciences.

[9]  Maximilian R. Stammnitz,et al.  Freshwater monitoring by nanopore sequencing , 2020, bioRxiv.

[10]  S. Acinas,et al.  Disentangling the mechanisms shaping the surface ocean microbiota , 2019, Microbiome.

[11]  Hervé Claustre,et al.  Observing the Global Ocean with Biogeochemical-Argo. , 2020, Annual review of marine science.

[12]  S. Sunagawa,et al.  Expanding Tara Oceans Protocols for Underway, Ecosystemic Sampling of the Ocean-Atmosphere Interface During Tara Pacific Expedition (2016–2018) , 2019, Front. Mar. Sci..

[13]  Tom O. Delmont,et al.  Genomic evidence for global ocean plankton biogeography shaped by large-scale current systems , 2019, bioRxiv.

[14]  Luis Pedro Coelho,et al.  Global Trends in Marine Plankton Diversity across Kingdoms of Life , 2019, Cell.

[15]  Luis Pedro Coelho,et al.  Gene Expression Changes and Community Turnover Differentially Shape the Global Ocean Metatranscriptome , 2019, Cell.

[16]  Jae Hak Lee,et al.  The Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP): A Platform for Integrated Multidisciplinary Ocean Science , 2019, Front. Mar. Sci..

[17]  Thierry Carval,et al.  On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array , 2019, Front. Mar. Sci..

[18]  Martin Edwards,et al.  A Global Plankton Diversity Monitoring Program , 2019, Front. Mar. Sci..

[19]  C. Gentemann,et al.  Using Saildrones to Validate Satellite-Derived Sea Surface Salinity and Sea Surface Temperature along the California/Baja Coast , 2019, Remote. Sens..

[20]  Rachelle M. Jensen,et al.  Citizen-Science for the Future: Advisory Case Studies From Around the Globe , 2019, Front. Mar. Sci..

[21]  G. Cochrane,et al.  Marine DNA Viral Macro- and Microdiversity from Pole to Pole , 2019, Cell.

[22]  P. Conan,et al.  Microbial Ecotoxicology of Marine Plastic Debris: A Review on Colonization and Biodegradation by the “Plastisphere” , 2019, Front. Microbiol..

[23]  L. Artigas,et al.  Globally Consistent Quantitative Observations of Planktonic Ecosystems , 2019, Front. Mar. Sci..

[24]  M. Prakash,et al.  Scale-free Vertical Tracking Microscopy: Towards Bridging Scales in Biological Oceanography , 2019, bioRxiv.

[25]  Luis Pedro Coelho,et al.  Community‐Level Responses to Iron Availability in Open Ocean Plankton Ecosystems , 2019, Global Biogeochemical Cycles.

[26]  E. Lindstrom,et al.  Satellite Oceanography—History and Introductory Concepts , 2019, Encyclopedia of Ocean Sciences.

[27]  Marina Lévy,et al.  The role of submesoscale currents in structuring marine ecosystems , 2018, Nature Communications.

[28]  Laura L. E. Cowen,et al.  Is Ocean Reflectance Acquired by Citizen Scientists Robust for Science Applications? , 2018, Remote. Sens..

[29]  S. De Monte,et al.  Ubiquitous abundance distribution of non-dominant plankton across the world’s ocean , 2018, bioRxiv.

[30]  Emmanuel S. Boss,et al.  The HydroColor App: Above Water Measurements of Remote Sensing Reflectance and Turbidity Using a Smartphone Camera , 2018, Sensors.

[31]  P. Bork,et al.  A global ocean atlas of eukaryotic genes , 2018, Nature Communications.

[32]  Francisco M. Cornejo-Castillo,et al.  Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition , 2017, Scientific Data.

[33]  Graeme C Hays,et al.  Mismatch between marine plankton range movements and the velocity of climate change , 2017, Nature Communications.

[34]  D. Boltovskoy,et al.  Planktonic equatorial diversity troughs: fact or artifact? Latitudinal diversity gradients in Radiolaria. , 2017, Ecology.

[35]  P. Monestiez,et al.  Advancing Citizen Science for Coastal and Ocean Research , 2017 .

[36]  P. Wincker,et al.  Extreme Diversity of Diplonemid Eukaryotes in the Ocean , 2016, Current Biology.

[37]  Victoria Tornero,et al.  Chemical contaminants entering the marine environment from sea-based sources: A review with a focus on European seas. , 2016, Marine pollution bulletin.

[38]  Ben Nichols,et al.  Distributed under Creative Commons Cc-by 4.0 Vsearch: a Versatile Open Source Tool for Metagenomics , 2022 .

[39]  Sung-Ho Kang,et al.  Declines in both redundant and trace species characterize the latitudinal diversity gradient in tintinnid ciliates , 2016, The ISME Journal.

[40]  S. Dyhrman,et al.  Sinking phytoplankton associated with carbon flux in the Atlantic Ocean , 2016 .

[41]  D. Richter,et al.  The symbiotic life of Symbiodinium in the open ocean within a new species of calcifying ciliate (Tiarina sp.) , 2015, The ISME Journal.

[42]  Francisco M. Cornejo-Castillo,et al.  Global distribution and vertical patterns of a prymnesiophyte–cyanobacteria obligate symbiosis , 2015, The ISME Journal.

[43]  Stéphane Audic,et al.  Insights into global diatom distribution and diversity in the world’s ocean , 2016, Proceedings of the National Academy of Sciences.

[44]  Luis Pedro Coelho,et al.  Plankton networks driving carbon export in the oligotrophic ocean , 2015, Nature.

[45]  T. Rognes,et al.  Swarm v2: highly-scalable and high-resolution amplicon clustering , 2015, PeerJ.

[46]  P. Bork,et al.  Tara Oceans studies plankton at planetary scale , 2015, Science.

[47]  Luis Pedro Coelho,et al.  Structure and function of the global ocean microbiome , 2015, Science.

[48]  Peer Bork,et al.  Determinants of community structure in the global plankton interactome , 2015, Science.

[49]  C. Duarte,et al.  Seafaring in the 21St Century: The Malaspina 2010 Circumnavigation Expedition , 2015 .

[50]  Ian T. Paulsen,et al.  The Common Oceanographer: Crowdsourcing the Collection of Oceanographic Data , 2014, PLoS biology.

[51]  F. Not,et al.  Brandtodinium gen. nov. and B. nutricula comb. Nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians , 2014, Journal of phycology.

[52]  James S. Cybulski,et al.  Foldscope: Origami-Based Paper Microscope , 2014, PloS one.

[53]  et all Rogério dos Santos Alves,et al.  A geological model of polymetallic nodule deposits in the Clarion Clipperton Fracture zone , 2014, IGARSS 2014.

[54]  M. Follows,et al.  Modelling spatial and temporal patterns in size-structured marine plankton communities: top -down and bottom -up controls , 2014 .

[55]  Scott C. Doney,et al.  MAREDAT: towards a world atlas of MARine Ecosystem DATa , 2013 .

[56]  F. Not,et al.  Diversity, Ecology and Biogeochemistry of Cyst-Forming Acantharia (Radiolaria) in the Oceans , 2013, PloS one.

[57]  Stéphane Audic,et al.  The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy , 2012, Nucleic Acids Res..

[58]  L. Guillou,et al.  The Parasitic Dinoflagellates Blastodinium spp. Inhabiting the Gut of Marine, Planktonic Copepods: Morphology, Ecology, and Unrecognized Species Diversity , 2012, Front. Microbio..

[59]  E. Karsenti A journey from reductionist to systemic cell biology aboard the schooner Tara , 2012, Molecular biology of the cell.

[60]  P. Falkowski,et al.  Ocean Science: The power of plankton , 2012, Nature.

[61]  P. Bork,et al.  A Holistic Approach to Marine Eco-Systems Biology , 2011, PLoS biology.

[62]  Rob Knight,et al.  UCHIME improves sensitivity and speed of chimera detection , 2011, Bioinform..

[63]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[64]  Stephanie Dutkiewicz,et al.  Modeling diverse communities of marine microbes. , 2011, Annual review of marine science.

[65]  Grégory Beaugrand,et al.  Climate, plankton and cod , 2010 .

[66]  Sherry Larkin,et al.  Red tides and participation in marine-based activities: Estimating the response of Southwest Florida residents , 2010 .

[67]  Jorge L. Sarmiento,et al.  The impact of remineralization depth on the air–sea carbon balance , 2009 .

[68]  James H Brown,et al.  A latitudinal diversity gradient in planktonic marine bacteria , 2008, Proceedings of the National Academy of Sciences.

[69]  E. Delong,et al.  The Microbial Engines That Drive Earth's Biogeochemical Cycles , 2008, Science.

[70]  E. Lindstrom,et al.  Satellite Oceanography, History, and Introductory Concepts , 2008 .

[71]  Sallie W. Chisholm,et al.  Emergent Biogeography of Microbial Communities in a Model Ocean , 2007, Science.

[72]  David W. Sims,et al.  Using continuous plankton recorder data , 2006 .

[73]  G. Hays,et al.  Climate change and marine plankton. , 2005, Trends in ecology & evolution.

[74]  O. White,et al.  Environmental Genome Shotgun Sequencing of the Sargasso Sea , 2004, Science.

[75]  Dawn M. Kaufman,et al.  LATITUDINAL GRADIENTS OF BIODIVERSITY:Pattern,Process,Scale,and Synthesis , 2003 .

[76]  P. C. Reid,et al.  The Continuous Plankton Recorder: concepts and history, from Plankton Indicator to undulating recorders [review article] , 2003 .

[77]  P. C. Reid,et al.  Reorganization of North Atlantic Marine Copepod Biodiversity and Climate , 2002, Science.

[78]  P. Legendre,et al.  SPECIES ASSEMBLAGES AND INDICATOR SPECIES:THE NEED FOR A FLEXIBLE ASYMMETRICAL APPROACH , 1997 .