Models and simulations of nuclear fuel materials properties

To address the complexity of the phenomena that occur in a nuclear fuel element, a multi-scale method was developed. The method incorporates theory-based atomistic and continuum models into finite element simulations to predict heat transport phenomena. By relating micro and nanoscale models to the macroscopic equilibrium and non-equilibrium simulations, the predictive character of the method is improved. The multi-scale approach was applied to calculations of point defect concentration, helium bubbles formation, oxygen diffusivity, and simulations of heat and mass transport in UO2+x. © 2007 Elsevier B.V. All rights reserved.

[1]  M. Stan,et al.  Defects and oxygen diffusion in PuO2-x , 2005 .

[2]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[3]  A. Chroneos,et al.  Solution Mechanisms for Dopant Oxides in Yttria , 2004 .

[4]  Wei,et al.  Ab initio calculation of force constants and full phonon dispersions. , 1992, Physical review letters.

[5]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[6]  Richard M. Martin,et al.  Ab Initio Force Constants of GaAs: A New Approach to Calculation of Phonons and Dielectric Properties , 1982 .

[7]  Akio Nakamura,et al.  Thermodynamic model of UO2 + x , 1989 .

[8]  M. Stan,et al.  A Bayesian approach to evaluating the uncertainty of thermodynamic data and phase diagrams , 2003 .

[9]  G. Murch,et al.  Oxygen self-diffusion in non-stoichiometric uranium dioxide , 1975 .

[10]  W. H. Weinberg,et al.  Theoretical foundations of dynamical Monte Carlo simulations , 1991 .

[11]  G. Murch Oxygen Diffusion in Uranium Oxide an Overview , 1991 .

[12]  Marius Stan,et al.  An atomistic study of solid/liquid interfaces and phase equilibrium in binary systems , 2003 .

[13]  A. Khachaturyan,et al.  Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: simulation of ζ′2 martensite in AuCd alloys , 2001 .

[14]  A. Karma Phase-field formulation for quantitative modeling of alloy solidification. , 2001, Physical review letters.

[15]  B. Willis Neutron diffraction studies of the actinide oxides I. Uranium dioxide and thorium dioxide at room temperature , 1963, Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences.

[16]  C. Sari,et al.  Oxygen redistribution in fast reactor oxide fuel , 1976 .

[17]  L. Chen,et al.  Phase-field model of domain structures in ferroelectric thin films , 2001 .

[18]  R. Cowley,et al.  THE CRYSTAL DYNAMICS OF URANIUM DIOXIDE , 1965 .

[19]  A. B. Bortz,et al.  A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .

[20]  Jie Shen,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 1998 .

[21]  F. Jollet,et al.  Plane-wave pseudopotential study of point defects in uranium dioxide , 2001 .

[22]  J. K. Fink,et al.  Thermophysical properties of uranium dioxide , 2000 .

[23]  M. Baskes,et al.  Using the modified embedded-atom method to calculate the properties of Pu-Ga alloys , 2003 .

[24]  K. C. Kim,et al.  Oxygen diffusion in UO2−x , 1981 .

[25]  Shenyang Y. Hu,et al.  A phase-field model for evolving microstructures with strong elastic inhomogeneity , 2001 .

[26]  J. Marin,et al.  Uranium and oxygen self-diffusion in UO2 , 1969 .

[27]  J. Belle Oxygen and uranium diffusion in uranium dioxide (a review) , 1969 .

[28]  A. Voter,et al.  Extending the Time Scale in Atomistic Simulation of Materials Annual Re-views in Materials Research , 2002 .

[29]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[30]  S. D. Groot,et al.  Thermodynamics of Irreversible Processes , 2018, Principles of Thermodynamics.

[31]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[32]  John W. Cahn,et al.  On Spinodal Decomposition , 1961 .

[33]  Ilya Prigogine,et al.  Introduction to Thermodynamics of Irreversible Processes , 1967 .

[34]  Theodore M. Besmann,et al.  Chemical thermodynamic representation of , 1985 .

[35]  Fähnle,et al.  Ab initio force-constant method for phonon dispersions in alkali metals. , 1995, Physical Review Letters.

[36]  P. Contamin,et al.  Autodiffusion de l'oxygene dans le dioxyde d'uranium surstoechiometrique , 1972 .

[37]  G. Murch A Monte Carlo analysis of diffusion and thermodynamics in UO2 x , 1975 .