KAM Theory and a Partial Justification of Greene's Criterion for Nontwist Maps

We consider perturbations of integrable, area preserving nontwist maps of the annulus (those are maps in which the twist condition changes sign). These maps appear in a variety of applications, notably transport in atmospheric Rossby waves. We show in suitable two-parameter families the persistence of critical circles (invariant circles whose rotation number is the maximum of all the rotation numbers of points in the map) with Diophantine rotation number. The parameter values with critical circles of frequency $\omega_0$ lie on a one-dimensional analytic curve.Furthermore, we show a partial justification of Greene's criterion: If analytic critical curves with Diophantine rotation number $\omega_0$ exist, the residue of periodic orbits (that is, one fourth of the trace of the derivative of the return map minus 2) with rotation number converging to $\omega_0$ converges to zero exponentially fast. We also show that if analytic curves exist, there should be periodic orbits approximating them and indicate how ...

[1]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[2]  J. Mather Stability of C ∞ Mappings: II. Infinitesimal Stability Implies Stability , 1969 .

[3]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[4]  S. Gils,et al.  Bifurcation of periodic orbits near a frequency maximum in near-integrable driven oscillators with friction , 1993 .

[5]  R. Llave,et al.  Cohomology equations near hyperbolic points and geometric versions of sternberg linearization theorem , 1996 .

[6]  H. Rüssmann On a new proof of Moser's twist mapping theorem , 1976 .

[7]  P. Morrison,et al.  Area preserving nontwist maps: periodic orbits and transition to chaos , 1996 .

[8]  John Franks,et al.  Generalizations of the Poincaré-Birkhoff Theorem , 1988 .

[9]  J. Howard,et al.  Stochasticity and reconnection in Hamiltonian systems , 1984 .

[10]  C. Eugene Wayne,et al.  An Introduction to KAM Theory , 1994 .

[11]  Diego del-Castillo-Negrete,et al.  Chaotic transport by Rossby waves in shear flow , 1993 .

[12]  A. Delshams,et al.  Estimates on Invariant Tori near an Elliptic Equilibrium Point of a Hamiltonian System , 1996 .

[13]  Diego del-Castillo-Negrete,et al.  Renormalization and transition to chaos in area preserving nontwist maps , 1997 .

[14]  Jair Koiller,et al.  Static and time-dependent perturbations of the classical elliptical billiard , 1996 .

[15]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[16]  À. Haro The primitive function of an exact symplectomorphism , 2000 .

[17]  Stathis Tompaidis,et al.  Approximation of Invariant Surfaces by Periodic Orbits in High-Dimensional Maps: Some Rigorous Results , 1996, Exp. Math..

[18]  Alan Weinstein,et al.  Lagrangian Submanifolds and Hamiltonian Systems , 1973 .

[19]  Stephen Wiggins,et al.  KAM tori are very sticky: rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow , 1994 .

[20]  C. Simó Invariant curves of analytic perturbed nontwist area preserving maps , 1998 .

[21]  Robert S. MacKay,et al.  Renormalisation in Area-Preserving Maps , 1993 .

[22]  Carles Simó,et al.  Towards global models near homoclinic tangencies of dissipative diffeomorphisms , 1998 .

[23]  J. Moser On the volume elements on a manifold , 1965 .

[24]  R. Llave,et al.  A rigorous partial justification of Greene's criterion , 1992 .

[25]  Cohomology Equations near Hyperbolic Points and Geometric Versions of Sternberg Linearization Theorem , 1994 .

[26]  Boris Hasselblatt,et al.  Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION: WHAT IS LOW-DIMENSIONAL DYNAMICS? , 1995 .

[27]  Stathis Tompaidis,et al.  Numerical Study of Invariant Sets of a Quasiperiodic Perturbation of a Symplectic Map , 1996, Exp. Math..

[28]  A. Delshams,et al.  Effective Stability and KAM Theory , 1996 .

[29]  Angel Jorbayx,et al.  On the normal behaviour of partially elliptic lower-dimensional tori of Hamiltonian systems , 1997 .

[30]  H. Rüssmann On optimal estimates for the solutions of linear difference equations on the circle , 1976 .

[31]  W. Kyner,et al.  Lectures on Hamiltonian systems . Rigorous and formal stability of orbits about an oblate planet , 1968 .

[32]  À. Haro Converse KAM theory for monotone positive symplectomorphisms , 1999 .

[33]  J. Humpherys,et al.  Nonmonotonic twist maps , 1995 .

[34]  George Huitema,et al.  Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos , 2002 .

[35]  D. Ornstein,et al.  A new method for twist theorems , 1993 .

[36]  S. O. Kamphorst,et al.  Time-dependent billiards , 1995 .

[37]  A. Valdés,et al.  Estimates on invariant tori near an elliptic equilibrium point of a Hamiltonian system , 1996 .

[38]  R. MacKay Greene's residue criterion , 1992 .

[39]  Jürgen Moser,et al.  Lectures on Celestial Mechanics , 1971 .