Cut sets as recognizable tree languages

A tree series over a semiring with partially ordered carrier set can be considered as a fuzzy set. We investigate conditions under which it can also be understood as a fuzzified recognizable tree language. In this sense, sufficient conditions are presented which, when imposed, ensure that every cut set, i.e., the pre-image of a prime filter of the carrier set, is a recognizable tree language. Moreover, such conditions are also presented for cut sets of recognizable tree series.

[1]  A. Salomaa Wechler, W., The Concept of Fuzziness in Automata and Language Theory. Studien zur Algebra und ihre Anwendungen 5. Berlin, Akademie‐Verlag 1978. 148 S., M 27,– , 1980 .

[2]  U. Hebisch,et al.  Semirings: Algebraic Theory and Applications in Computer Science , 1998 .

[3]  Ferenc Gécseg,et al.  Tree Languages , 1997, Handbook of Formal Languages.

[4]  J. Goguen L-fuzzy sets , 1967 .

[5]  W. Wechler The concept of fuzziness in automata and language theory , 1978 .

[6]  G. Grätzer General Lattice Theory , 1978 .

[7]  Helmut Seidl Finite Tree Automata with Cost Functions , 1994, Theor. Comput. Sci..

[8]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[9]  J. Golan Semirings and their applications , 1999 .

[10]  Heiko Vogler,et al.  Determinization of Finite State Weighted Tree Automata , 2003, J. Autom. Lang. Comb..

[11]  Christian Pech,et al.  Kleene type results for weighted tree automata , 2003 .

[12]  Michael, G. Thomason,et al.  Deterministic Acceptors of Regular Fuzzy Languages , 1974, IEEE Trans. Syst. Man Cybern..

[13]  Branimir Seselja,et al.  Representing ordered structures by fuzzy sets: an overview , 2003, Fuzzy Sets Syst..

[14]  Radim Belohlávek,et al.  Determinism and fuzzy automata , 2002, Inf. Sci..

[15]  Manfred Droste,et al.  A Kleene Theorem for Weighted Tree Automata , 2004, Theory of Computing Systems.

[16]  Branimir Seselja,et al.  Completion of ordered structures by cuts of fuzzy sets: an overview , 2003, Fuzzy Sets Syst..

[17]  Symeon Bozapalidis,et al.  Représentations Matricielles Des Séries D'Arbre Reconnaissables , 1989, RAIRO Theor. Informatics Appl..

[18]  Branimir Šešelja,et al.  On a generalization of fuzzy algebras and congruences , 1994 .

[19]  Symeon Bozapalidis Positive Tree Representations and Applications to Tree Automata , 1997, Inf. Comput..

[20]  Zoltán Ésik,et al.  Formal Tree Series , 2002 .

[21]  George Gratzer,et al.  Universal Algebra , 1979 .

[22]  Dexter Kozen On the Myhill-Nerode Theorem for Trees , 1992 .

[23]  Desmond Fearnley-Sander,et al.  Universal Algebra , 1982 .

[24]  Ferenc Gécseg,et al.  Tree Automata , 2015, ArXiv.

[25]  Jean Berstel,et al.  Recognizable Formal Power Series on Trees , 1982, Theor. Comput. Sci..

[26]  A. Nerode,et al.  Linear automaton transformations , 1958 .

[27]  Eugene S. Santos,et al.  Maximin Automata , 1968, Inf. Control..

[28]  Peter R. J. Asveld,et al.  Algebraic aspects of families of fuzzy languages , 2001, Theor. Comput. Sci..

[29]  Werner Kuich Formal Power Series over Trees , 1997, Developments in Language Theory.