The imaginary quadratic fields of class number 4
暂无分享,去创建一个
[1] D. R. Heath-Brown,et al. The Theory of the Riemann Zeta-Function , 1987 .
[2] Positive integers expressible as a sum of three squares in essentially only one way , 1984 .
[3] J. Oesterlé,et al. Nombres de classes des corps quadratiques imaginaires , 1984 .
[4] Duncan A. Buell. Small class numbers and extreme values of $L$-functions of quadratic fields , 1977 .
[5] Dorian Goldfeld,et al. The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer , 1976 .
[6] H. Stark. On complex quadratic fields wth class-number two , 1975 .
[7] H. Montgomery,et al. Notes on small class numbers , 1974 .
[8] BY A. Baker. On the class number of imaginary quadratic fields , 1971 .
[9] Daniel Shanks,et al. Integer sequences having prescribed quadratic character , 1970 .
[10] A. Baker. A Remark on the Class Number of Quadratic Fields , 1969 .
[11] H. Stark. L-functions and character sums for quadratic forms (I) , 1968 .
[12] H. M. Stark,et al. A complete determination of the complex quadratic fields of class-number one. , 1967 .
[13] S. Chowla,et al. On Epstein's Zeta-function. , 1967 .
[14] H. Davenport. Multiplicative Number Theory , 1967 .
[15] J. Miller,et al. Tables of the Riemann zeta function , 1961 .
[16] S. Chowla,et al. On Epstein's Zeta Function (I). , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[17] H. Heilbronn. ON THE CLASS-NUMBER IN IMAGINARY QUADRATIC FIELDS , 1934 .