Solutions to aggregation–diffusion equations with nonlinear mobility constructed via a deterministic particle approximation

We investigate the existence of weak type solutions for a class of aggregation–diffusion PDEs with nonlinear mobility obtained as large particle limit of a suitable nonlocal version of the follow-the-leader scheme, which is interpreted as the discrete Lagrangian approximation of the target continuity equation. We restrict the analysis to bounded, non-negative initial data with bounded variation and away from vacuum, supported in a closed interval with zero-velocity boundary conditions. The main novelties of this work concern the presence of a nonlinear mobility term and the non-strict monotonicity of the diffusion function. As a consequence, our result applies also to strongly degenerate diffusion equations. The results are complemented with some numerical simulations.

[1]  Laurent Gosse,et al.  Identification of Asymptotic Decay to Self-Similarity for One-Dimensional Filtration Equations , 2006, SIAM J. Numer. Anal..

[2]  J. Soler,et al.  Morphogenetic action through flux-limited spreading. , 2013, Physics of life reviews.

[3]  Giuseppe Toscani,et al.  WASSERSTEIN METRIC AND LARGE-TIME ASYMPTOTICS OF NONLINEAR DIFFUSION EQUATIONS , 2005 .

[4]  A. Masi,et al.  Mathematical Methods for Hydrodynamic Limits , 1991 .

[5]  Pierre Degond,et al.  Modelling and simulation of vehicular traffic jam formation , 2008 .

[6]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[7]  Benoît Perthame,et al.  Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .

[8]  Filippo Santambrogio,et al.  Optimal Transport for Applied Mathematicians , 2015 .

[9]  Martin Burger,et al.  The Keller-Segel Model for Chemotaxis with Prevention of Overcrowding: Linear vs. Nonlinear Diffusion , 2006, SIAM J. Math. Anal..

[10]  George Papanicolaou,et al.  Nonlinear diffusion limit for a system with nearest neighbor interactions , 1988 .

[11]  E. Socolovsky,et al.  A numerical procedure for the porous media equation , 1985 .

[12]  Robert D. Russell,et al.  Self–similar numerical solutions of the porous–medium equation using moving mesh methods , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  D. Matthes,et al.  Convergent Lagrangian Discretization for Drift-Diffusion with Nonlocal Aggregation , 2017 .

[14]  Pablo A. Ferrari,et al.  Shock fluctuations in asymmetric simple exclusion , 1992 .

[15]  G. Russo,et al.  Follow-the-Leader Approximations of Macroscopic Models for Vehicular and Pedestrian Flows , 2016, 1610.06743.

[16]  M. Rosini,et al.  Rigorous Derivation of Nonlinear Scalar Conservation Laws from Follow-the-Leader Type Models via Many Particle Limit , 2014, 1404.7062.

[17]  José A. Carrillo,et al.  A Lagrangian Scheme for the Solution of Nonlinear Diffusion Equations Using Moving Simplex Meshes , 2017, J. Sci. Comput..

[18]  P. Sternberg,et al.  Convergence of a Particle Method for Diffusive Gradient Flows in One Dimension , 2016, SIAM J. Math. Anal..

[19]  Oliver Junge,et al.  A Fully Discrete Variational Scheme for Solving Nonlinear Fokker-Planck Equations in Multiple Space Dimensions , 2017, SIAM J. Numer. Anal..

[20]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[21]  A. Mogilner,et al.  A non-local model for a swarm , 1999 .

[22]  M. D. Francesco Scalar conservation laws seen as gradient flows: known results and new perspectives , 2016 .

[23]  J. A. Carrillo,et al.  Numerical Simulation of Diffusive and Aggregation Phenomena in Nonlinear Continuity Equations by Evolving Diffeomorphisms , 2009, SIAM J. Sci. Comput..

[24]  J. Vázquez The Porous Medium Equation , 2006 .

[25]  A. Ōkubo,et al.  MODELLING SOCIAL ANIMAL AGGREGATIONS , 1994 .

[26]  Axel Klar,et al.  Derivation of Continuum Traffic Flow Models from Microscopic Follow-the-Leader Models , 2002, SIAM J. Appl. Math..

[27]  S. Fagioli,et al.  Deterministic particle approximation of scalar conservation laws , 2016 .

[28]  Maria Bruna,et al.  Diffusion of multiple species with excluded-volume effects. , 2012, The Journal of chemical physics.

[29]  S. Levin,et al.  Diffusion and Ecological Problems: Modern Perspectives , 2013 .

[30]  Nicola Bellomo,et al.  Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues , 2015 .

[31]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[32]  Carlos Conca,et al.  Remarks on the blowup and global existence for a two species chemotactic Keller–Segel system in 2 , 2011, European Journal of Applied Mathematics.

[33]  V. Calvez,et al.  Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up , 2014, 1404.0139.

[34]  N. Risebro,et al.  On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients , 2003 .

[35]  Roger L. Hughes,et al.  A continuum theory for the flow of pedestrians , 2002 .

[36]  N. Bellomo,et al.  On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics , 2014 .

[37]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[38]  Giovanni Russo,et al.  Deterministic diffusion of particles , 1990 .

[39]  M. Winkler,et al.  Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production , 2016, 1608.07622.

[40]  Pierre Degond,et al.  A Deterministic Approximation of Diffusion Equations Using Particles , 1990, SIAM J. Sci. Comput..

[41]  C. Villani Optimal Transport: Old and New , 2008 .

[42]  M. Rosini,et al.  Deterministic particle approximation of the Hughes model in one space dimension , 2016, 1602.06153.

[43]  Benoît Perthame,et al.  Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions , 2004 .

[44]  Andrea L. Bertozzi,et al.  Finite-Time Blow-up of Solutions of an Aggregation Equation in Rn , 2007 .

[45]  Marco Di Francesco,et al.  Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic. , 2017, Mathematical biosciences and engineering : MBE.

[46]  P. Ferrari,et al.  Shock Fluctuations in Flat TASEP Under Critical Scaling , 2014, 1408.4850.

[47]  Riccarda Rossi,et al.  Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces , 2003 .

[48]  Vincenzo Capasso,et al.  Modeling the aggregative behavior of ants of the species Polyergus rufescens , 2000 .

[49]  K. Karlsen,et al.  A strongly degenerate parabolic aggregation equation , 2010, 1007.1470.

[50]  K. Painter,et al.  Volume-filling and quorum-sensing in models for chemosensitive movement , 2002 .

[51]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[52]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[53]  Laurent Gosse,et al.  Lagrangian Numerical Approximations to One-Dimensional Convolution-Diffusion Equations , 2006, SIAM J. Sci. Comput..

[54]  Guillaume Carlier,et al.  Geodesics for a class of distances in the space of probability measures , 2012, 1204.2517.

[55]  Marco Di Francesco,et al.  A nonlocal swarm model for predators–prey interactions , 2016 .

[56]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[57]  M. Di Francesco,et al.  Deterministic particle approximation for nonlocal transport equations with nonlinear mobility , 2018, Journal of Differential Equations.

[58]  A. Chertock,et al.  Formation of discontinuities in flux-saturated degenerate parabolic equations , 2003 .

[59]  J. Carrillo,et al.  Numerical Study of a Particle Method for Gradient Flows , 2015, 1512.03029.

[60]  Giovanni Russo,et al.  A particle method for collisional kinetic equations. I. Basic theory and one-dimensional results , 1990 .

[61]  D. Matthes,et al.  Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation , 2013, 1301.0747.