Discretization of the induced-charge boundary integral equation.

Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces.

[1]  Daniel M. Chipman,et al.  Comparison of solvent reaction field representations , 2002 .

[2]  J. Barthel,et al.  Physical Chemistry of Electrolyte Solutions: Modern Aspects , 1998 .

[3]  D. Levitt,et al.  Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions. , 1978, Biophysical journal.

[4]  M. Gilson,et al.  Ions and inhibitors in the binding site of HIV protease: comparison of Monte Carlo simulations and the linearized Poisson-Boltzmann theory. , 2009, Biophysical journal.

[5]  Barry Honig,et al.  Extending the Applicability of the Nonlinear Poisson−Boltzmann Equation: Multiple Dielectric Constants and Multivalent Ions† , 2001 .

[6]  Conduction of Na+ and K+ through the NaK channel: molecular and Brownian dynamics studies. , 2008, Biophysical journal.

[7]  Bob Eisenberg,et al.  Monte Carlo simulations of ion selectivity in a biological Na channel: Charge–space competition , 2002 .

[8]  F M Richards,et al.  Areas, volumes, packing and protein structure. , 1977, Annual review of biophysics and bioengineering.

[9]  Barry Honig,et al.  Focusing of electric fields in the active site of Cu‐Zn superoxide dismutase: Effects of ionic strength and amino‐acid modification , 1986, Proteins.

[10]  C. Tanford,et al.  Theory of Protein Titration Curves. I. General Equations for Impenetrable Spheres , 1957 .

[11]  Dezso Boda,et al.  Volume exclusion in calcium selective channels. , 2008, Biophysical journal.

[12]  Shin-Ho Chung,et al.  Solutions of Poisson's equation in channel-like geometries , 1998 .

[13]  B. Honig,et al.  On the calculation of electrostatic interactions in proteins. , 1985, Journal of molecular biology.

[14]  Leslie Greengard,et al.  Electrostatics and heat conduction in high contrast composite materials , 2006 .

[15]  Guo-Wei Wei,et al.  Highly accurate biomolecular electrostatics in continuum dielectric environments , 2008, J. Comput. Chem..

[16]  Weihua Geng,et al.  Treatment of geometric singularities in implicit solvent models. , 2007, The Journal of chemical physics.

[17]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[18]  S. Sriharan,et al.  The fast multipole boundary element method for molecular electrostatics: An optimal approach for large systems , 1995, J. Comput. Chem..

[19]  Michael J. Holst,et al.  Multigrid solution of the Poisson—Boltzmann equation , 1992, J. Comput. Chem..

[20]  S. Kuyucak,et al.  Role of the dielectric constants of membrane proteins and channel water in ion permeation. , 2003, Biophysical journal.

[21]  Huan-Xiang Zhou,et al.  Macromolecular electrostatic energy within the nonlinear Poisson–Boltzmann equation , 1994 .

[22]  Randy J. Zauhar,et al.  Computing the electric potential of biomolecules: Application of a new method of molecular surface triangulation , 1990 .

[23]  B. Eisenberg,et al.  Binding and selectivity in L-type calcium channels: a mean spherical approximation. , 2000, Biophysical journal.

[24]  Enrico O. Purisima,et al.  Fast summation boundary element method for calculating solvation free energies of macromolecules , 1998 .

[25]  M. O. Fenley,et al.  Protein-ion binding process on finite macromolecular concentration. A Poisson-Boltzmann and Monte Carlo study. , 2008, The journal of physical chemistry. B.

[26]  Abraham Nitzan,et al.  A Dynamic Lattice Monte Carlo Model of Ion Transport in Inhomogeneous Dielectric Environments: Method and Implementation , 2000 .

[27]  Tapan K. Sarkar,et al.  The Electrostatic Field of Conducting Bodies in Multiple Dielectric Media , 1984 .

[28]  Jaydeep P Bardhan,et al.  Numerical solution of boundary-integral equations for molecular electrostatics. , 2009, The Journal of chemical physics.

[29]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[30]  M. Sanner,et al.  Reduced surface: an efficient way to compute molecular surfaces. , 1996, Biopolymers.

[31]  Benzhuo Lu,et al.  Order N algorithm for computation of electrostatic interactions in biomolecular systems , 2006, Proceedings of the National Academy of Sciences.

[32]  Peter C. Jordan Electrostatic modeling of ion pores. Energy barriers and electric field profiles. , 1982, Biophysical journal.

[33]  W. Im,et al.  Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. , 2002, Journal of molecular biology.

[34]  Jacob K. White,et al.  Second-kind integral formulations of the capacitance problem , 1996, Adv. Comput. Math..

[35]  K. Sharp,et al.  Electrostatic interactions in macromolecules: theory and applications. , 1990, Annual review of biophysics and biophysical chemistry.

[36]  R. Zauhar,et al.  The rigorous computation of the molecular electric potential , 1988 .

[37]  S Subramaniam,et al.  Computation of molecular electrostatics with boundary element methods. , 1997, Biophysical journal.

[38]  Guo-Wei Wei,et al.  Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces , 2007, J. Comput. Phys..

[39]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[40]  A. Varnek,et al.  A fast and Space‐efficient boundary element method for computing electrostatic and hydration effects in large molecules , 1996 .

[41]  Abraham Nitzan,et al.  Comparison of Dynamic Lattice Monte Carlo Simulations and the Dielectric Self-Energy Poisson-Nernst-Planck Continuum Theory for Model Ion Channels , 2004 .

[42]  Jean-Luc Guermond Numerical quadratures for layer potentials over curved domains in R 3 , 1992 .

[43]  R Abagyan,et al.  The contour-buildup algorithm to calculate the analytical molecular surface. , 1996, Journal of structural biology.

[44]  J. Warwicker,et al.  Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. , 1982, Journal of molecular biology.

[45]  Jacob K. White,et al.  Accurate solution of multi‐region continuum biomolecule electrostatic problems using the linearized Poisson–Boltzmann equation with curved boundary elements , 2009, J. Comput. Chem..

[46]  Manoranjan Panda,et al.  Explicit ion, implicit water solvation for molecular dynamics of nucleic acids and highly charged molecules , 2008, J. Comput. Chem..

[47]  Michael Mascagni,et al.  Monte Carlo-based linear Poisson-Boltzmann approach makes accurate salt-dependent solvation free energy predictions possible. , 2007, The Journal of chemical physics.

[48]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[49]  Dezso Boda,et al.  The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel. , 2006, The Journal of chemical physics.

[50]  R. Zauhar,et al.  A new method for computing the macromolecular electric potential. , 1985, Journal of molecular biology.

[51]  B. Eisenberg,et al.  Steric selectivity in Na channels arising from protein polarization and mobile side chains. , 2007, Biophysical journal.

[52]  Peter C. Jordan Electrostatic modeling of ion pores. II. Effects attributable to the membrane dipole potential. , 1983, Biophysical journal.

[53]  Y N Vorobjev,et al.  SIMS: computation of a smooth invariant molecular surface. , 1997, Biophysical journal.

[54]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[55]  Weidong Xin,et al.  A boundary element formulation of protein electrostatics with explicit ions , 2007, J. Comput. Phys..

[56]  John L Hess,et al.  CALCULATION OF NON-LIFTING POTENTIAL FLOW ABOUT ARBITRARY THREE-DIMENSIONAL BODIES , 1962 .

[57]  Randy J. Zauhar,et al.  SMART: A solvent-accessible triangulated surface generator for molecular graphics and boundary element applications , 1995, J. Comput. Aided Mol. Des..

[58]  Weihua Geng,et al.  Treatment of charge singularities in implicit solvent models. , 2007, The Journal of chemical physics.

[59]  Shin-Ho Chung,et al.  Permeation of ions across the potassium channel: Brownian dynamics studies. , 1999, Biophysical journal.

[60]  Abraham Nitzan,et al.  The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents. , 2003, Biophysical journal.

[61]  Shaw Pb Theory of the Poisson Green's function for discontinuous dielectric media with an application to protein biophysics. , 1985 .

[62]  H. Berendsen,et al.  The electric potential of a macromolecule in a solvent: A fundamental approach , 1991 .

[63]  Jacob K. White,et al.  FFTSVD: A Fast Multiscale Boundary-Element Method Solver Suitable for Bio-MEMS and Biomolecule Simulation , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[64]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[65]  D. Griffiths Introduction to Electrodynamics , 2017 .

[66]  S. Linse,et al.  Ion-binding properties of calbindin D9k: a Monte Carlo simulation study. , 1991, Biochemistry.

[67]  Jacob K. White,et al.  Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces. , 2007, The Journal of chemical physics.

[68]  Junfeng Wang,et al.  Improved integral formulations for fast 3-D method-of-momentssolvers , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[69]  Shan Zhao,et al.  Minimal molecular surfaces and their applications , 2008, J. Comput. Chem..

[70]  Dirk Gillespie,et al.  Monte Carlo Simulation Study of a System with a Dielectric Boundary: Application to Calcium Channel Selectivity , 2004 .

[71]  Valerio Pascucci,et al.  Dynamic maintenance and visualization of molecular surfaces , 2003, Discret. Appl. Math..

[72]  A. Ruehli,et al.  Efficient Capacitance Calculations for Three-Dimensional Multiconductor Systems , 1973 .

[73]  S. Chung,et al.  Energy barrier presented to ions by the vestibule of the biological membrane channel. , 1996, Biophysical journal.

[74]  Emil Alexov,et al.  Poisson-Boltzmann calculations of nonspecific salt effects on protein-protein binding free energies. , 2007, Biophysical journal.

[75]  Nathan A. Baker Biomolecular Applications of Poisson-Boltzmann Methods , 2005 .

[76]  J. N. Newman Distributions of sources and normal dipoles over a quadrilateral panel , 1986 .

[77]  H. Scheraga,et al.  A fast adaptive multigrid boundary element method for macromolecular electrostatic computations in a solvent , 1997 .

[78]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[79]  V. Dahirel,et al.  Toward the description of electrostatic interactions between globular proteins: potential of mean force in the primitive model. , 2007, The Journal of chemical physics.

[80]  W. Im,et al.  A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels. , 2000, Biophysical journal.

[81]  K. Sharp,et al.  Macroscopic models of aqueous solutions : biological and chemical applications , 1993 .

[82]  Barry Honig,et al.  Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation , 1990 .

[83]  A. Nitzan,et al.  A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.

[84]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[85]  Marcia O. Fenley,et al.  Fast adaptive multipole method for computation of electrostatic energy in simulations of polyelectrolyte DNA , 1996, J. Comput. Chem..

[86]  Marcia O. Fenley,et al.  Fast Boundary Element Method for the Linear Poisson-Boltzmann Equation , 2002 .

[87]  W. Im,et al.  Brownian dynamics simulations of ions channels: A general treatment of electrostatic reaction fields for molecular pores of arbitrary geometry , 2001 .