Drought effects on Buds Growth and Dynamic of Tunisian Cork Oak Populations

Forest species have adapted to their local climate by changing some of their phenological characteristics. Differential phenological responses may modify tree chance of survival by altering the competitive balance between them. The study of key phenological stages (budding, budburst, flowering, falling leaves ...) knew a renewed interest these last years for climate changes consequences researches. Characterizing the phenological variability response, of five Tunisian cork oak populations from contrasting climatic situations, in front to water deficit, has been the subject of this study. Large differences between populations from highest and coldest sites as well as those of lowest and warm sites were detected and adaptative responses specific to some populations were founded.

[1]  Isabel Correia,et al.  Phenology and growth dynamics in Mediterranean evergreen oaks: Effects of environmental conditions and water relations , 2011 .

[2]  M. Khouja,et al.  Morphological evaluation of cork oak (Quercus suber): Mediterranean provenance variability in Tunisia , 2007, Annals of Forest Science.

[3]  F. Valladares,et al.  Growth versus storage: responses of Mediterranean oak seedlings to changes in nutrient and water availabilities , 2007, Annals of Forest Science.

[4]  B. E. Mahall,et al.  A quantitative comparison of two extremes in chaparral shrub phenology , 2010 .

[5]  Pilar Castro-Díez,et al.  Summer water stress and shade alter bud size and budburst date in three mediterranean Quercus species , 2010, Trees.

[6]  C. Daly,et al.  Leaf life span as a simple predictor of evergreen forest zonation in China , 2009 .

[7]  F. Valladares,et al.  Population differences in juvenile survival under increasing drought are mediated by seed size in cork oak (Quercus suber L.). , 2009 .

[8]  J. Camarero,et al.  Summer-drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction , 2009, Trees.

[9]  I. Urbieta,et al.  Human and non‐human determinants of forest composition in southern Spain: evidence of shifts towards cork oak dominance as a result of management over the past century , 2008 .

[10]  M. Vaz,et al.  Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. , 2007, Tree physiology.

[11]  Rik Leemans,et al.  Faculty Opinions recommendation of European phenological response to climate change matches the warming pattern. , 2006 .

[12]  R. Zamora,et al.  Interactions of drought and shade effects on seedlings of four Quercus species: physiological and structural leaf responses. , 2006, The New phytologist.

[13]  J. Harte,et al.  Biophysical and Biogeochemical Responses to Climate Change Depend on Dispersal and Migration , 2006 .

[14]  F. Giorgi,et al.  Climate change hot‐spots , 2006 .

[15]  L. Sancho,et al.  Interactive effects of shade and irrigation on the performance of seedlings of three Mediterranean Quercus species. , 2006, Tree physiology.

[16]  F. Giorgi,et al.  Climate change hotspots , 2006 .

[17]  A. Cescatti,et al.  Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad‐leaved species , 2005 .

[18]  William G. Lee,et al.  Modulation of leaf economic traits and trait relationships by climate , 2005 .

[19]  R. Petit,et al.  Conserving biodiversity under climate change: the rear edge matters. , 2005, Ecology letters.

[20]  D. Neale,et al.  Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. IV. Cold-hardiness QTL verification and candidate gene mapping , 2005, Molecular Breeding.

[21]  L. Gil,et al.  Biennial acorn maturation and its relationship with flowering phenology in Iberian populations of Quercus suber , 2004, Trees.

[22]  Sean C. Thomas,et al.  The worldwide leaf economics spectrum , 2004, Nature.

[23]  Josep Peñuelas,et al.  Complex spatiotemporal phenological shifts as a response to rainfall changes. , 2004, The New phytologist.

[24]  P. Quézel,et al.  Biogeography, ecology and history of Mediterranean Quercus ilex ecosystems , 1992, Vegetatio.

[25]  D. Neale,et al.  From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees , 2003 .

[26]  W. Chao,et al.  Knowing when to grow: signals regulating bud dormancy. , 2003, Trends in plant science.

[27]  J. Espín,et al.  Phenolic compounds and fatty acids from acorns (Quercus spp.), the main dietary constituent of free-ranged Iberian pigs. , 2003, Journal of agricultural and food chemistry.

[28]  R. Arora,et al.  Induction and Release of Bud Dormancy in Woody Perennials: A Science Comes of Age , 2003 .

[29]  M. Aouni,et al.  Influence d‘un stress hydrique modéré ou sévère sur la croissance de jeunes plants de Casuarina glauca Sieb. , 2003 .

[30]  Zhou Zhe RELATIONSHIPS RETWEEN THE DISTRIBUTIONS OF QUERCUS SECT HETEROBALANUS(FAGACEAE)AND UPLIFT OF HIMALAYAS , 2003 .

[31]  T. Givnish Adaptive significance of evergreen vs. deciduous leaves : solving the triple paradox , 2002 .

[32]  R. Neilson,et al.  Forest Processes and Global Environmental Change: Predicting the Effects of Individual and Multiple Stressors , 2001 .

[33]  L. Iverson,et al.  Global Change in Forests: Responses of Species, Communities, and Biomes , 2001 .

[34]  D. Neale,et al.  Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. I. Timing of vegetative bud flush , 2001, Theoretical and Applied Genetics.

[35]  Robert S. Thompson,et al.  Potential Changes in the Distributions of Western North America Tree and Shrub Taxa under Future Climate Scenarios , 2001, Ecosystems.

[36]  L. Harvey Climate and Global Environmental Change , 2018 .

[37]  H. Honda,et al.  Branching Principles Governing the Architecture of Cornus kousa (Cornaceae) , 1999 .

[38]  Isabelle Chuine,et al.  Climatic determinants of budburst seasonality in four temperate‐zone tree species , 1999 .

[39]  A. Nardini,et al.  Competitive strategies for water availability in two Mediterranean Quercus species , 1999 .

[40]  A. Albouchi,et al.  Endurcissement à la sécheresse et accumulation de glucides solubles et d'acides aminés libres dans les phyllodes d'Acacia cyanophylla Lindl , 1997 .

[41]  Harald Bugmann,et al.  The use of a European forest model in North America: a study of ecosystem response to climate gradients , 1995 .

[42]  P. Reich,et al.  Causes and Consequences of Variation in Conifer Leaf Life-Span , 1995 .

[43]  H. Tuominen,et al.  Seasonal changes in bud dormancy in relation to bud morphology, water and starch content, and abscisic acid concentration in adult trees of Betula pubescens. , 1994, Tree physiology.

[44]  J. Pezeu-Massabuau La Maison rustique , 1993 .

[45]  A. Solomon,et al.  Past and future climate change: response by mixed deciduous–coniferous forest ecosystems in northern Michigan , 1992 .

[46]  M. Aizen,et al.  Latitudinal trends in acorn size in eastern North American species of Quercus , 1992 .

[47]  Catherine Zabinski,et al.  Changes in geographical range resulting from greenhouse warming: effects on biodiversity in forests , 1992 .

[48]  Paul G. Risser,et al.  Global warming and biological diversity , 1992 .

[49]  J. Lepart,et al.  Évolution du potentiel hydrique foliaire et de la conductance stomatique de quatre chênes méditerranéens lors d'une période de dessèchement , 1991 .

[50]  J. Boyer,et al.  Leaf water potentials measured with a pressure chamber. , 1967, Plant physiology.

[51]  P. Boudy,et al.  Economie forestière Nord-africaine - Tome 1 : milieu physique et milieu humain , 1948 .