Superelastic Ni-Ti Alloys in Orthodontics

[1]  G. Rodan,et al.  Cyclic AMP and cyclic GMP: mediators of the mechanical effects on bone remodeling. , 1975, Science.

[2]  R. Kusy On the use of nomograms to determine the elastic property ratios of orthodontic arch wires. , 1983, American journal of orthodontics.

[3]  F Miura,et al.  The super-elastic property of the Japanese NiTi alloy wire for use in orthodontics. , 1986, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[4]  R. K. Utley The activity of alveolar bone incident to orthodontic tooth movement as studied by oxytetracycline-induced fluorescence. , 1967, American journal of orthodontics.

[5]  K. Shimizu Pseudoelasticity and some affecting factors. , 1985 .

[6]  K. de Groot,et al.  Induction of Immunological Tolerance by Oral Administration of Nickel and Chromium , 1984, Journal of dental research.

[7]  C. Burstone,et al.  An Evaluation of Beta Titanium Alloys for Use in Orthodontic Appliances , 1979, Journal of dental research.

[8]  A. Deruyttere,et al.  Stress-induced transformations and the shape-memory effect , 1972 .

[9]  R. Kusy,et al.  Geometric and material parameters of a nickel-titanium and a beta titanium orthodontic arch wire alloy. , 1987, Dental materials : official publication of the Academy of Dental Materials.

[10]  K. Reitan Continuous Bodily Tooth Movement and its Histological Significance , 1947 .

[11]  A. Oppenheim Human tissue response to orthodontic intervention of short and long duration , 1942 .

[12]  A. Gianelly,et al.  Visualization of cellular dynamics associated with orthodontic tooth movement. , 1968, American journal of orthodontics.

[13]  G. Andreasen,et al.  Laboratory and clinical analyses of nitinol wire. , 1978, American journal of orthodontics.

[14]  G. B. Olson,et al.  Thermoelastic behavior in martensitic transformations , 1975 .

[15]  R. Hotz [Parodontal reaction to strong forces in the treatment with fixed appliances]. , 1966, Fortschritte der Kieferorthopädie.

[16]  D. Wayne,et al.  Mechanical properties of orthodontic wires in tension, bending, and torsion. , 1982, American journal of orthodontics.

[17]  J. L. Henry,et al.  The pattern of resorption and repair of human cementum. , 1951, Journal of the American Dental Association.

[18]  W. E. Roberts,et al.  Cellular response to orthodontic force. , 1981, Dental clinics of North America.

[19]  O. Mercier,et al.  The influence of an anisotrophic elastic medium on the motion of dislocations: Application to the martensitic transformation , 1976 .

[20]  M. Schmerling,et al.  Using the shape recovery of nitinol in the Harrington rod treatment of scoliosis. , 1976, Journal of biomedical materials research.

[21]  R. Wasilewski Martensitic transformation and fatigue strength in TiNi , 1971 .

[22]  Lucas Delaey,et al.  Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations: Part 1 Structural and microstructural changes associated with the transformations , 1974 .

[23]  C. M. Wayman,et al.  Crystallographic similarities in shape memory martensites , 1979 .

[24]  C. Burstone Variable-modulus orthodontics. , 1981, American journal of orthodontics.

[25]  H. Mohamed,et al.  On the mechanism of the shape memory effect in Ni-Ti alloy , 1976 .

[26]  Kaare Reitan,et al.  Tissue behavior during orthodontic tooth movement , 1960 .

[27]  O. Stuteville Injuries to the Teeth and Supporting Structures Caused by Various Orthodontic Appliances, and Methods of Preventing These Injuries , 1937 .

[28]  K. N. Melton,et al.  Fatigue of NITI thermoelastic martensites , 1979 .

[29]  C J Burstone,et al.  Chinese NiTi wire--a new orthodontic alloy. , 1985, American journal of orthodontics.

[30]  G. Andreasen,et al.  An evaluation of 55 cobalt substituted Nitinol wire for use in orthodontics. , 1971, Journal of the American Dental Association.

[31]  H. Zander,et al.  The effect of stresses on the periodontal structures. , 1956, Oral surgery, oral medicine, and oral pathology.

[32]  G. R. Edwards,et al.  Characterizing the shape memory effect potential of NiTi alloys , 1975 .

[33]  W. M. Wainwright Faciolingual tooth movement: its influence on the root and cortical plate. , 1973, American Journal of Orthodontics.

[34]  T. Axéll,et al.  Oral exposure to a nickel‐containing dental alloy of persons with hypersensitive skin reactions to nickel , 1984, Contact dermatitis.

[35]  K Reitan,et al.  Some factors determining the evaluation of forces in orthodontics , 1957 .

[36]  L. Castleman,et al.  Biocompatibility of nitinol alloy as an implant material. , 1976, Journal of biomedical materials research.

[37]  V. Deangelis Observations on the response of alveolar bone to orthodontic force. , 1970, American journal of orthodontics.

[38]  P. Rygh Ultrastructural changes in pressure zones of human periodontium incident to orthodontic tooth movement. , 1973, Acta odontologica Scandinavica.

[39]  W. J. Buehler,et al.  Additional unique property changes observed during TiNi transition , 1972 .

[40]  Shuichi Miyazaki,et al.  Transformation pseudoelasticity and deformation behavior in a Ti-50.6at%Ni alloy , 1981 .

[41]  C. M. Wayman,et al.  Transformation behavior and the shape memory in thermally cycled TiNi , 1972 .

[42]  R. M. Johnson,et al.  Tissue reaction to nitinol wire alloy. , 1973, Oral surgery, oral medicine, and oral pathology.

[43]  G. Andreasen A clinical trial of alignment of teeth using a 0.019 inch thermal nitinol wire with a transition temperature range between 31 °C. and 45 °C. , 1980 .

[44]  R. J. Wasilewski,et al.  Homogeneity range and the martensitic transformation in TiNi , 1971 .